6 research outputs found

    Depth Assisted Full Resolution Network for Single Image-based View Synthesis

    Full text link
    Researches in novel viewpoint synthesis majorly focus on interpolation from multi-view input images. In this paper, we focus on a more challenging and ill-posed problem that is to synthesize novel viewpoints from one single input image. To achieve this goal, we propose a novel deep learning-based technique. We design a full resolution network that extracts local image features with the same resolution of the input, which contributes to derive high resolution and prevent blurry artifacts in the final synthesized images. We also involve a pre-trained depth estimation network into our system, and thus 3D information is able to be utilized to infer the flow field between the input and the target image. Since the depth network is trained by depth order information between arbitrary pairs of points in the scene, global image features are also involved into our system. Finally, a synthesis layer is used to not only warp the observed pixels to the desired positions but also hallucinate the missing pixels with recorded pixels. Experiments show that our technique performs well on images of various scenes, and outperforms the state-of-the-art techniques

    Softmax Splatting for Video Frame Interpolation

    Full text link
    Differentiable image sampling in the form of backward warping has seen broad adoption in tasks like depth estimation and optical flow prediction. In contrast, how to perform forward warping has seen less attention, partly due to additional challenges such as resolving the conflict of mapping multiple pixels to the same target location in a differentiable way. We propose softmax splatting to address this paradigm shift and show its effectiveness on the application of frame interpolation. Specifically, given two input frames, we forward-warp the frames and their feature pyramid representations based on an optical flow estimate using softmax splatting. In doing so, the softmax splatting seamlessly handles cases where multiple source pixels map to the same target location. We then use a synthesis network to predict the interpolation result from the warped representations. Our softmax splatting allows us to not only interpolate frames at an arbitrary time but also to fine tune the feature pyramid and the optical flow. We show that our synthesis approach, empowered by softmax splatting, achieves new state-of-the-art results for video frame interpolation.Comment: CVPR 2020, http://sniklaus.com/softspla

    Depth-Assisted Full Resolution Network for Single Image-Based View Synthesis

    No full text
    corecore