7,360 research outputs found

    Efficient Load Balancing for Cloud Computing by Using Content Analysis

    Get PDF
    Nowadays, computer networks have grown rapidly due to the demand for information technology management and facilitation of greater functionality. The service provided based on a single machine cannot accommodate large databases. Therefore, single servers must be combined for server group services. The problem in grouping server service is that it is very hard to manage many devices which have different hardware. Cloud computing is an extensive scalable computing infrastructure that shares existing resources. It is a popular option for people and businesses for a number of reasons including cost savings and security. This paper aimed to propose an efficient technique of load balance control by using HA Proxy in cloud computing with the objective of receiving and distributing the workload to the computer server to share the processing resources. The proposed technique applied round-robin scheduling for an efficient resource management of the cloud storage systems that focused on an effective workload balancing and a dynamic replication strategy. The evaluation approach was based on the benchmark data from requests per second and failed requests. The results showed that the proposed technique could improve performance of load balancing by 1,000 request /6.31 sec in cloud computing and generate fewer false alarm

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Performance and Memory Space Optimizations for Embedded Systems

    Get PDF
    Embedded systems have three common principles: real-time performance, low power consumption, and low price (limited hardware). Embedded computers use chip multiprocessors (CMPs) to meet these expectations. However, one of the major problems is lack of efficient software support for CMPs; in particular, automated code parallelizers are needed. The aim of this study is to explore various ways to increase performance, as well as reducing resource usage and energy consumption for embedded systems. We use code restructuring, loop scheduling, data transformation, code and data placement, and scratch-pad memory (SPM) management as our tools in different embedded system scenarios. The majority of our work is focused on loop scheduling. Main contributions of our work are: We propose a memory saving strategy that exploits the value locality in array data by storing arrays in a compressed form. Based on the compressed forms of the input arrays, our approach automatically determines the compressed forms of the output arrays and also automatically restructures the code. We propose and evaluate a compiler-directed code scheduling scheme, which considers both parallelism and data locality. It analyzes the code using a locality parallelism graph representation, and assigns the nodes of this graph to processors.We also introduce an Integer Linear Programming based formulation of the scheduling problem. We propose a compiler-based SPM conscious loop scheduling strategy for array/loop based embedded applications. The method is to distribute loop iterations across parallel processors in an SPM-conscious manner. The compiler identifies potential SPM hits and misses, and distributes loop iterations such that the processors have close execution times. We present an SPM management technique using Markov chain based data access. We propose a compiler directed integrated code and data placement scheme for 2-D mesh based CMP architectures. Using a Code-Data Affinity Graph (CDAG) to represent the relationship between loop iterations and array data, it assigns the sets of loop iterations to processing cores and sets of data blocks to on-chip memories. We present a memory bank aware dynamic loop scheduling scheme for array intensive applications.The goal is to minimize the number of memory banks needed for executing the group of loop iterations

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    Curriculum implementation exploratory studies: Final report

    Get PDF
    Throughout the history of schooling in New Zealand the national curriculum has been revised at fairly regular intervals. Consequently, schools are periodically faced with having to accommodate to new curriculum. In between major changes other specifically-focused changes may arise; for example, the increased recent emphasis upon numeracy and literacy

    Hardware acceleration for power efficient deep packet inspection

    Get PDF
    The rapid growth of the Internet leads to a massive spread of malicious attacks like viruses and malwares, making the safety of online activity a major concern. The use of Network Intrusion Detection Systems (NIDS) is an effective method to safeguard the Internet. One key procedure in NIDS is Deep Packet Inspection (DPI). DPI can examine the contents of a packet and take actions on the packets based on predefined rules. In this thesis, DPI is mainly discussed in the context of security applications. However, DPI can also be used for bandwidth management and network surveillance. DPI inspects the whole packet payload, and due to this and the complexity of the inspection rules, DPI algorithms consume significant amounts of resources including time, memory and energy. The aim of this thesis is to design hardware accelerated methods for memory and energy efficient high-speed DPI. The patterns in packet payloads, especially complex patterns, can be efficiently represented by regular expressions, which can be translated by the use of Deterministic Finite Automata (DFA). DFA algorithms are fast but consume very large amounts of memory with certain kinds of regular expressions. In this thesis, memory efficient algorithms are proposed based on the transition compressions of the DFAs. In this work, Bloom filters are used to implement DPI on an FPGA for hardware acceleration with the design of a parallel architecture. Furthermore, devoted at a balance of power and performance, an energy efficient adaptive Bloom filter is designed with the capability of adjusting the number of active hash functions according to current workload. In addition, a method is given for implementation on both two-stage and multi-stage platforms. Nevertheless, false positive rates still prevents the Bloom filter from extensive utilization; a cache-based counting Bloom filter is presented in this work to get rid of the false positives for fast and precise matching. Finally, in future work, in order to estimate the effect of power savings, models will be built for routers and DPI, which will also analyze the latency impact of dynamic frequency adaption to current traffic. Besides, a low power DPI system will be designed with a single or multiple DPI engines. Results and evaluation of the low power DPI model and system will be produced in future

    Voltage stacking for near/sub-threshold operation

    Get PDF
    corecore