1,448 research outputs found

    Globalstar for the Military

    Get PDF
    Globalstar, a new satellite-based mobile voice/data telephone service, is being planned by LQSS for operation in 1998. It will let military personnel, using handheld, ship-board, or vehicular mobile terminals in even the most remote areas of the world, to stay in contact with each other and with personnel who are on established communication networks. A constellation of 48 low-earth orbiting (LEO) satellites and an advanced method of digital signal formatting will provide low-cost and reliable voice, data, fax and position-locating services to military personnel in most areas of the world. Globalstar will interoperate with existing local (domestic or foreign), long-distance, public, private, terrestrial-cellular, DoD, and specialized telecommunications networks. The system will permit the military, for its general purpose communications, to share with commercial MSS (Mobile Satellite Services) at low cost. This paper includes an overview of the Globalstar system and describes possible DoD applications

    Near-Space Communications: the Last Piece of 6G Space-Air-Ground-Sea Integrated Network Puzzle

    Full text link
    This article presents a comprehensive study on the emerging near-space communications (NS-COM) within the context of space-air-ground-sea integrated network (SAGSIN). Specifically, we firstly explore the recent technical developments of NS-COM, followed by the discussions about motivations behind integrating NS-COM into SAGSIN. To further demonstrate the necessity of NS-COM, a comparative analysis between the NS-COM network and other counterparts in SAGSIN is conducted, covering aspects of deployment, coverage, channel characteristics and unique problems of NS-COM network. Afterwards, the technical aspects of NS-COM, including channel modeling, random access, channel estimation, array-based beam management and joint network optimization, are examined in detail. Furthermore, we explore the potential applications of NS-COM, such as structural expansion in SAGSIN communication, civil aviation communication, remote and urgent communication, weather monitoring and carbon neutrality. Finally, some promising research avenues are identified, including stratospheric satellite (StratoSat) -to-ground direct links for mobile terminals, reconfigurable multiple-input multiple-output (MIMO) and holographic MIMO, federated learning in NS-COM networks, maritime communication, electromagnetic spectrum sensing and adversarial game, integrated sensing and communications, StratoSat-based radar detection and imaging, NS-COM assisted enhanced global navigation system, NS-COM assisted intelligent unmanned system and free space optical (FSO) communication. Overall, this paper highlights that the NS-COM plays an indispensable role in the SAGSIN puzzle, providing substantial performance and coverage enhancement to the traditional SAGSIN architecture.Comment: 28 pages, 8 figures, 2 table

    Operations other than war: Requirements for analysis tools research report

    Full text link

    Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review

    Full text link
    A modern-day society demands resilient, reliable, and smart urban infrastructure for effective and in telligent operations and deployment. However, unexpected, high-impact, and low-probability events such as earthquakes, tsunamis, tornadoes, and hurricanes make the design of such robust infrastructure more complex. As a result of such events, a power system infrastructure can be severely affected, leading to unprecedented events, such as blackouts. Nevertheless, the integration of smart grids into the existing framework of smart cities adds to their resilience. Therefore, designing a resilient and reliable power system network is an inevitable requirement of modern smart city infras tructure. With the deployment of the Internet of Things (IoT), smart cities infrastructures have taken a transformational turn towards introducing technologies that do not only provide ease and comfort to the citizens but are also feasible in terms of sustainability and dependability. This paper presents a holistic view of a resilient and sustainable smart city architecture that utilizes IoT, big data analytics, unmanned aerial vehicles, and smart grids through intelligent integration of renew able energy resources. In addition, the impact of disasters on the power system infrastructure is investigated and different types of optimization techniques that can be used to sustain the power flow in the network during disturbances are compared and analyzed. Furthermore, a comparative review analysis of different data-driven machine learning techniques for sustainable smart cities is performed along with the discussion on open research issues and challenges

    Department of Defense Dictionary of Military and Associated Terms

    Get PDF
    The Joint Publication 1-02, Department of Defense Dictionary of Military and Associated Terms sets forth standard US military and associated terminology to encompass the joint activity of the Armed Forces of the United States. These military and associated terms, together with their definitions, constitute approved Department of Defense (DOD) terminology for general use by all DOD components

    Collaborative environments for disaster relief

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.Includes bibliographical references (leaves 93-94).In a large-scale disaster relief mission, a variety of personnel and organizations with different expertise take part in the relief activities towards a common goal. Interactions between them are important to promote efficiency, and the relief activities, especially search and rescue (SAR) activities, are carried out in a short time period. Some Emergency Offices of City/State/Federal governments and two case studies of actual disaster relief activities after large earthquakes were examined in order to recognize the issues in terms of collaborative environments during a disaster relief missions. These examinations have revealed the fact that the availabilities of site-specific information is a major concern when some decisions concerning relief activities are made, but the communication between on-site personnel and headquarters is not enough mainly due to the lack of cross-organizational coordination. Several commercial solutions have been developed and several studies have been made on collaborative environments at MIT. The current typical solutions consist of e-mail system, group discussion, bulletin board system, and shared data repositories integrated with mapping systems. Some further enhancements of these systems should be considered: multiple client access and detail design of thin portable client devices. To develop collaborative environments for disaster relief missions, the requirements have been gathered and the requirement analysis has been developed. According to functional role, relief mission participants are classified into four groups: field agent, team leader, coordinator, decision maker and specialist/advisor. The category "field agent" plays an integral role during a mission so that its activities are focused on. The hierarchy of collaborative session has been developed on account of that of participant roles. The multiple device access is an important functionality of collaborative environments. Some of the leading portable devices are featured and three types of wireless communication are described. To collect and report site-specific information in a disaster area is critical to make decisions. The needs and requirements of robot-human interaction that can be applied to a relief mission are discussed in comparison with SAR dogs.by Yusuke Mizuno.M.Eng

    Crisis management: operational logistics and asset visibility technologies

    Get PDF
    MBA Professional ReportThe purpose of this MBA Project was to identify and explore logistical frameworks that leverage technology to overcome problems associated with coordinated logistics operations during crisis management. Over the past ten years, there have been significant advances in RFID, satellite and other related asset visibility technologies. These advances are mature enough to significantly increase the probability of achieving a useful common operational picture during emergency response activities. Recent crisis response operations that would have benefited from improved asset visibility include the Indian Ocean tsunami, the Pakistani earthquake, Hurricane Katrina and those related to the Global War on Terror. In each of these cases, multi-agency involvement, both foreign and domestic, compounded the complexity of asset tracking and communication protocols. The establishment of a logisticstracking framework that provides adequate asset visibility, while maintaining operational security, will greatly increase the effectiveness of future crisis response operations. The proposed logistics framework serves as a viable solution for common logistical problems encountered by the U.S. and other industrialized nations while conducting crisis response operations. The framework identifies concepts, technologies and protocols that can be used to improve crisis operations on a global scale.http://archive.org/details/crisismanagement1094510122Approved for public release; distribution is unlimited

    Embracing drones and the Internet of drones systems in manufacturing – An exploration of obstacles

    Get PDF
    The manufacturing sector attributes the growing prominence of Drones and the Internet of Drones (IoD) systems to their multifaceted utility in delivery, process monitoring, infrastructure inspection, inventory management, predictive maintenance, and safety inspections. Despite their potential benefits, adopting these technologies faces significant obstacles that need systematic identification and resolution. The current literature inadequately addresses the barriers impeding the adoption of Drones and IoD systems in manufacturing, indicating a research gap. This study bridges this gap by providing comprehensive insights and facilitating the organisational transition towards embracing Drone and IoD technologies. This research identifies 20 critical barriers to deploying Drones and IoD in manufacturing. These barriers are validated through a global quantitative survey of 120 Drone experts and analysed via Exploratory Factor Analysis (EFA). EFA categorises these challenges into six distinct dimensions. Utilising the Analytical Hierarchy Process (AHP), these dimensions and individual barriers are ranked, incorporating feedback from five Drone specialists. The study highlights ‘Safety and Human Resource Barriers’ and ‘Payload Capacity and Battery Barriers’ as the most predominant obstacles. Key concerns include limited battery life, explosion risks, and potential damage to assets and individuals. This research significantly advances the existing literature by presenting a practical methodology for categorising and prioritising Drone and IoD adoption barriers. Employing EFA and AHP offers a globally relevant framework for stakeholders to strategically address these challenges, advancing the integration of drones and IoD systems in the manufacturing domain
    • …
    corecore