47,798 research outputs found

    Quantifying Differential Privacy under Temporal Correlations

    Full text link
    Differential Privacy (DP) has received increased attention as a rigorous privacy framework. Existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives, which assume that the data are independent, or that adversaries do not have knowledge of the data correlations. However, continuously generated data in the real world tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations in the context of continuous data release. First, we model the temporal correlations using Markov model and analyze the privacy leakage of a DP mechanism when adversaries have knowledge of such temporal correlations. Our analysis reveals that the privacy leakage of a DP mechanism may accumulate and increase over time. We call it temporal privacy leakage. Second, to measure such privacy leakage, we design an efficient algorithm for calculating it in polynomial time. Although the temporal privacy leakage may increase over time, we also show that its supremum may exist in some cases. Third, to bound the privacy loss, we propose mechanisms that convert any existing DP mechanism into one against temporal privacy leakage. Experiments with synthetic data confirm that our approach is efficient and effective.Comment: appears at ICDE 201

    Notes on Information-Theoretic Privacy

    Full text link
    We investigate the tradeoff between privacy and utility in a situation where both privacy and utility are measured in terms of mutual information. For the binary case, we fully characterize this tradeoff in case of perfect privacy and also give an upper-bound for the case where some privacy leakage is allowed. We then introduce a new quantity which quantifies the amount of private information contained in the observable data and then connect it to the optimal tradeoff between privacy and utility.Comment: The corrected version of a paper appeared in Allerton 201

    Quantifying Differential Privacy in Continuous Data Release under Temporal Correlations

    Get PDF
    Differential Privacy (DP) has received increasing attention as a rigorous privacy framework. Many existing studies employ traditional DP mechanisms (e.g., the Laplace mechanism) as primitives to continuously release private data for protecting privacy at each time point (i.e., event-level privacy), which assume that the data at different time points are independent, or that adversaries do not have knowledge of correlation between data. However, continuously generated data tend to be temporally correlated, and such correlations can be acquired by adversaries. In this paper, we investigate the potential privacy loss of a traditional DP mechanism under temporal correlations. First, we analyze the privacy leakage of a DP mechanism under temporal correlation that can be modeled using Markov Chain. Our analysis reveals that, the event-level privacy loss of a DP mechanism may \textit{increase over time}. We call the unexpected privacy loss \textit{temporal privacy leakage} (TPL). Although TPL may increase over time, we find that its supremum may exist in some cases. Second, we design efficient algorithms for calculating TPL. Third, we propose data releasing mechanisms that convert any existing DP mechanism into one against TPL. Experiments confirm that our approach is efficient and effective.Comment: accepted in TKDE special issue "Best of ICDE 2017". arXiv admin note: substantial text overlap with arXiv:1610.0754

    Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning

    Full text link
    Deep Learning has recently become hugely popular in machine learning, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level DP applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).Comment: ACM CCS'17, 16 pages, 18 figure
    corecore