1,299,000 research outputs found

    From patterned response dependency to structured covariate dependency: categorical-pattern-matching

    Get PDF
    Data generated from a system of interest typically consists of measurements from an ensemble of subjects across multiple response and covariate features, and is naturally represented by one response-matrix against one covariate-matrix. Likely each of these two matrices simultaneously embraces heterogeneous data types: continuous, discrete and categorical. Here a matrix is used as a practical platform to ideally keep hidden dependency among/between subjects and features intact on its lattice. Response and covariate dependency is individually computed and expressed through mutliscale blocks via a newly developed computing paradigm named Data Mechanics. We propose a categorical pattern matching approach to establish causal linkages in a form of information flows from patterned response dependency to structured covariate dependency. The strength of an information flow is evaluated by applying the combinatorial information theory. This unified platform for system knowledge discovery is illustrated through five data sets. In each illustrative case, an information flow is demonstrated as an organization of discovered knowledge loci via emergent visible and readable heterogeneity. This unified approach fundamentally resolves many long standing issues, including statistical modeling, multiple response, renormalization and feature selections, in data analysis, but without involving man-made structures and distribution assumptions. The results reported here enhance the idea that linking patterns of response dependency to structures of covariate dependency is the true philosophical foundation underlying data-driven computing and learning in sciences.Comment: 32 pages, 10 figures, 3 box picture

    Improving a Strong Neural Parser with Conjunction-Specific Features

    Full text link
    While dependency parsers reach very high overall accuracy, some dependency relations are much harder than others. In particular, dependency parsers perform poorly in coordination construction (i.e., correctly attaching the "conj" relation). We extend a state-of-the-art dependency parser with conjunction-specific features, focusing on the similarity between the conjuncts head words. Training the extended parser yields an improvement in "conj" attachment as well as in overall dependency parsing accuracy on the Stanford dependency conversion of the Penn TreeBank

    Why is German dependency parsing more reliable than constituent parsing?

    Get PDF
    In recent years, research in parsing has extended in several new directions. One of these directions is concerned with parsing languages other than English. Treebanks have become available for many European languages, but also for Arabic, Chinese, or Japanese. However, it was shown that parsing results on these treebanks depend on the types of treebank annotations used. Another direction in parsing research is the development of dependency parsers. Dependency parsing profits from the non-hierarchical nature of dependency relations, thus lexical information can be included in the parsing process in a much more natural way. Especially machine learning based approaches are very successful (cf. e.g.). The results achieved by these dependency parsers are very competitive although comparisons are difficult because of the differences in annotation. For English, the Penn Treebank has been converted to dependencies. For this version, Nivre et al. report an accuracy rate of 86.3%, as compared to an F-score of 92.1 for Charniaks parser. The Penn Chinese Treebank is also available in a constituent and a dependency representations. The best results reported for parsing experiments with this treebank give an F-score of 81.8 for the constituent version and 79.8% accuracy for the dependency version. The general trend in comparisons between constituent and dependency parsers is that the dependency parser performs slightly worse than the constituent parser. The only exception occurs for German, where F-scores for constituent plus grammatical function parses range between 51.4 and 75.3, depending on the treebank, NEGRA or TüBa-D/Z. The dependency parser based on a converted version of Tüba-D/Z, in contrast, reached an accuracy of 83.4%, i.e. 12 percent points better than the best constituent analysis including grammatical functions
    corecore