1,299,000 research outputs found
From patterned response dependency to structured covariate dependency: categorical-pattern-matching
Data generated from a system of interest typically consists of measurements
from an ensemble of subjects across multiple response and covariate features,
and is naturally represented by one response-matrix against one
covariate-matrix. Likely each of these two matrices simultaneously embraces
heterogeneous data types: continuous, discrete and categorical. Here a matrix
is used as a practical platform to ideally keep hidden dependency among/between
subjects and features intact on its lattice. Response and covariate dependency
is individually computed and expressed through mutliscale blocks via a newly
developed computing paradigm named Data Mechanics. We propose a categorical
pattern matching approach to establish causal linkages in a form of information
flows from patterned response dependency to structured covariate dependency.
The strength of an information flow is evaluated by applying the combinatorial
information theory. This unified platform for system knowledge discovery is
illustrated through five data sets. In each illustrative case, an information
flow is demonstrated as an organization of discovered knowledge loci via
emergent visible and readable heterogeneity. This unified approach
fundamentally resolves many long standing issues, including statistical
modeling, multiple response, renormalization and feature selections, in data
analysis, but without involving man-made structures and distribution
assumptions. The results reported here enhance the idea that linking patterns
of response dependency to structures of covariate dependency is the true
philosophical foundation underlying data-driven computing and learning in
sciences.Comment: 32 pages, 10 figures, 3 box picture
Improving a Strong Neural Parser with Conjunction-Specific Features
While dependency parsers reach very high overall accuracy, some dependency
relations are much harder than others. In particular, dependency parsers
perform poorly in coordination construction (i.e., correctly attaching the
"conj" relation). We extend a state-of-the-art dependency parser with
conjunction-specific features, focusing on the similarity between the conjuncts
head words. Training the extended parser yields an improvement in "conj"
attachment as well as in overall dependency parsing accuracy on the Stanford
dependency conversion of the Penn TreeBank
Why is German dependency parsing more reliable than constituent parsing?
In recent years, research in parsing has extended in several new directions. One of these directions is concerned with parsing languages other than English. Treebanks have become available for many European languages, but also for Arabic, Chinese, or Japanese. However, it was shown that parsing results on these treebanks depend on the types of treebank annotations used. Another direction in parsing research is the development of dependency parsers. Dependency parsing profits from the non-hierarchical nature of dependency relations, thus lexical information can be included in the parsing process in a much more natural way. Especially machine learning based approaches are very successful (cf. e.g.). The results achieved by these dependency parsers are very competitive although comparisons are difficult because of the differences in annotation. For English, the Penn Treebank has been converted to dependencies. For this version, Nivre et al. report an accuracy rate of 86.3%, as compared to an F-score of 92.1 for Charniaks parser. The Penn Chinese Treebank is also available in a constituent and a dependency representations. The best results reported for parsing experiments with this treebank give an F-score of 81.8 for the constituent version and 79.8% accuracy for the dependency version. The general trend in comparisons between constituent and dependency parsers is that the dependency parser performs slightly worse than the constituent parser. The only exception occurs for German, where F-scores for constituent plus grammatical function parses range between 51.4 and 75.3, depending on the treebank, NEGRA or TüBa-D/Z. The dependency parser based on a converted version of Tüba-D/Z, in contrast, reached an accuracy of 83.4%, i.e. 12 percent points better than the best constituent analysis including grammatical functions
- …
