2,340 research outputs found

    Dependence Balance Based Outer Bounds for Gaussian Networks with Cooperation and Feedback

    Full text link
    We obtain new outer bounds on the capacity regions of the two-user multiple access channel with generalized feedback (MAC-GF) and the two-user interference channel with generalized feedback (IC-GF). These outer bounds are based on the idea of dependence balance which was proposed by Hekstra and Willems [1]. To illustrate the usefulness of our outer bounds, we investigate three different channel models. We first consider a Gaussian MAC with noisy feedback (MAC-NF), where transmitter kk, k=1,2k=1,2, receives a feedback YFkY_{F_{k}}, which is the channel output YY corrupted with additive white Gaussian noise ZkZ_{k}. As the feedback noise variances become large, one would expect the feedback to become useless, which is not reflected by the cut-set bound. We demonstrate that our outer bound improves upon the cut-set bound for all non-zero values of the feedback noise variances. Moreover, in the limit as ΟƒZk2β†’βˆž\sigma_{Z_{k}}^{2}\to \infty, k=1,2k=1,2, our outer bound collapses to the capacity region of the Gaussian MAC without feedback. Secondly, we investigate a Gaussian MAC with user-cooperation (MAC-UC), where each transmitter receives an additive white Gaussian noise corrupted version of the channel input of the other transmitter [2]. For this channel model, the cut-set bound is sensitive to the cooperation noises, but not sensitive enough. For all non-zero values of cooperation noise variances, our outer bound strictly improves upon the cut-set outer bound. Thirdly, we investigate a Gaussian IC with user-cooperation (IC-UC). For this channel model, the cut-set bound is again sensitive to cooperation noise variances but not sensitive enough. We demonstrate that our outer bound strictly improves upon the cut-set bound for all non-zero values of cooperation noise variances.Comment: Submitted to IEEE Transactions on Information Theor

    The Capacity of the Gaussian Cooperative Two-user Multiple Access Channel to within a Constant Gap

    Full text link
    The capacity region of the cooperative two-user Multiple Access Channel (MAC) in Gaussian noise is determined to within a constant gap for both the Full-Duplex (FD) and Half-Duplex (HD) case. The main contributions are: (a) for both FD and HD: unilateral cooperation suffices to achieve capacity to within a constant gap where only the user with the strongest link to the destination needs to engage in cooperation, (b) for both FD and HD: backward joint decoding is not necessary to achieve capacity to within a constant gap, and (c) for HD: time sharing between the case where the two users do not cooperate and the case where the user with the strongest link to the destination acts as pure relay for the other user suffices to achieve capacity to within a constant gap. These findings show that simple achievable strategies are approximately optimal for all channel parameters with interesting implications for practical cooperative schemes.Comment: Submitted to the 2013 IEEE International Conference on Communications (ICC 2013

    Capacity Bounds For Multi-User Channels With Feedback, Relaying and Cooperation

    Get PDF
    Recent developments in communications are driven by the goal of achieving high data rates for wireless communication devices. To achieve this goal, several new phenomena need to be investigated from an information theoretic perspective. In this dissertation, we focus on three of these phenomena: feedback, relaying and cooperation. We study these phenomena for various multi-user channels from an information theoretic point of view. One of the aims of this dissertation is to study the performance limits of simple wireless networks, for various forms of feedback and cooperation. Consider an uplink communication system, where several users wish to transmit independent data to a base-station. If the base-station can send feedback to the users, one can expect to achieve higher data-rates since feedback can enable cooperation among the users. Another way to improve data-rates is to make use of the broadcast nature of the wireless medium, where the users can overhear each other's transmitted signals. This particular phenomenon has garnered much attention lately, where users can help in increasing each other's data-rates by utilizing the overheard information. This overheard information can be interpreted as a generalized form of feedback. To take these several models of feedback and cooperation into account, we study the two-user multiple access channel and the two-user interference channel with generalized feedback. For all these models, we derive new outer bounds on their capacity regions. We specialize these results for noiseless feedback, additive noisy feedback and user-cooperation models and show strict improvements over the previously known bounds. Next, we study state-dependent channels with rate-limited state information to the receiver or to the transmitter. This state-dependent channel models a practical situation of fading, where the fade information is partially available to the receiver or to the transmitter. We derive new bounds on the capacity of such channels and obtain capacity results for a special sub-class of such channels. We study the effect of relaying by considering the parallel relay network, also known as the diamond channel. The parallel relay network considered in this dissertation comprises of a cascade of a general broadcast channel to the relays and an orthogonal multiple access channel from the relays to the receiver. We characterize the capacity of the diamond channel, when the broadcast channel is deterministic. We also study the diamond channel with partially separated relays, and obtain capacity results when the broadcast channel is either semi-deterministic or physically degraded. Our results also demonstrate that feedback to the relays can strictly increase the capacity of the diamond channel. In several sensor network applications, distributed lossless compression of sources is of considerable interest. The presence of adversarial nodes makes it important to design compression schemes which serve the dual purpose of reliable source transmission to legitimate nodes while minimizing the information leakage to the adversarial nodes. Taking this constraint into account, we consider information theoretic secrecy, where our aim is to limit the information leakage to the eavesdropper. For this purpose, we study a secure source coding problem with coded side information from a helper to the legitimate user. We derive the rate-equivocation region for this problem. We show that the helper node serves the dual purpose of reducing the source transmission rate and increasing the uncertainty at the adversarial node. Next, we considered two different secure source coding models and provide the corresponding rate-equivocation regions

    Capacity Theorems for the Fading Interference Channel with a Relay and Feedback Links

    Full text link
    Handling interference is one of the main challenges in the design of wireless networks. One of the key approaches to interference management is node cooperation, which can be classified into two main types: relaying and feedback. In this work we consider simultaneous application of both cooperation types in the presence of interference. We obtain exact characterization of the capacity regions for Rayleigh fading and phase fading interference channels with a relay and with feedback links, in the strong and very strong interference regimes. Four feedback configurations are considered: (1) feedback from both receivers to the relay, (2) feedback from each receiver to the relay and to one of the transmitters (either corresponding or opposite), (3) feedback from one of the receivers to the relay, (4) feedback from one of the receivers to the relay and to one of the transmitters. Our results show that there is a strong motivation for incorporating relaying and feedback into wireless networks.Comment: Accepted to the IEEE Transactions on Information Theor
    • …
    corecore