6,633 research outputs found

    Ternary Syndrome Decoding with Large Weight

    Get PDF
    The Syndrome Decoding problem is at the core of many code-based cryptosystems. In this paper, we study ternary Syndrome Decoding in large weight. This problem has been introduced in the Wave signature scheme but has never been thoroughly studied. We perform an algorithmic study of this problem which results in an update of the Wave parameters. On a more fundamental level, we show that ternary Syndrome Decoding with large weight is a really harder problem than the binary Syndrome Decoding problem, which could have several applications for the design of code-based cryptosystems

    A short note on Merlin-Arthur protocols for subset sum

    Get PDF
    In the subset sum problem we are given n positive integers along with a target integer t. A solution is a subset of these integers summing to t. In this short note we show that for a given subset sum instance there is a proof of size Oβˆ—(t)O^*(\sqrt{t}) of what the number of solutions is that can be constructed in Oβˆ—(t)O^*(t) time and can be probabilistically verified in time Oβˆ—(t)O^*(\sqrt{t}) with at most constant error probability. Here, the Oβˆ—()O^*() notation omits factors polynomial in the input size nlog⁑(t)n\log(t).Comment: 2 page

    Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach

    Full text link
    The subset sum problem (SSP) can be briefly stated as: given a target integer EE and a set AA containing nn positive integer aja_j, find a subset of AA summing to EE. The \textit{density} dd of an SSP instance is defined by the ratio of nn to mm, where mm is the logarithm of the largest integer within AA. Based on the structural and statistical properties of subset sums, we present an improved enumeration scheme for SSP, and implement it as a complete and exact algorithm (EnumPlus). The algorithm always equivalently reduces an instance to be low-density, and then solve it by enumeration. Through this approach, we show the possibility to design a sole algorithm that can efficiently solve arbitrary density instance in a uniform way. Furthermore, our algorithm has considerable performance advantage over previous algorithms. Firstly, it extends the density scope, in which SSP can be solved in expected polynomial time. Specifically, It solves SSP in expected O(nlog⁑n)O(n\log{n}) time when density dβ‰₯cβ‹…n/log⁑nd \geq c\cdot \sqrt{n}/\log{n}, while the previously best density scope is dβ‰₯cβ‹…n/(log⁑n)2d \geq c\cdot n/(\log{n})^{2}. In addition, the overall expected time and space requirement in the average case are proven to be O(n5log⁑n)O(n^5\log n) and O(n5)O(n^5) respectively. Secondly, in the worst case, it slightly improves the previously best time complexity of exact algorithms for SSP. Specifically, the worst-case time complexity of our algorithm is proved to be O((nβˆ’6)2n/2+n)O((n-6)2^{n/2}+n), while the previously best result is O(n2n/2)O(n2^{n/2}).Comment: 11 pages, 1 figur

    Nonquadratic estimators of a quadratic functional

    Get PDF
    Estimation of a quadratic functional over parameter spaces that are not quadratically convex is considered. It is shown, in contrast to the theory for quadratically convex parameter spaces, that optimal quadratic rules are often rate suboptimal. In such cases minimax rate optimal procedures are constructed based on local thresholding. These nonquadratic procedures are sometimes fully efficient even when optimal quadratic rules have slow rates of convergence. Moreover, it is shown that when estimating a quadratic functional nonquadratic procedures may exhibit different elbow phenomena than quadratic procedures.Comment: Published at http://dx.doi.org/10.1214/009053605000000147 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore