5 research outputs found

    Division algebra codes achieve MIMO block fading channel capacity within a constant gap

    Full text link
    This work addresses the question of achieving capacity with lattice codes in multi-antenna block fading channels when the number of fading blocks tends to infinity. In contrast to the standard approach in the literature which employs random lattice ensembles, the existence results in this paper are derived from number theory. It is shown that a multiblock construction based on division algebras achieves rates within a constant gap from block fading capacity both under maximum likelihood decoding and naive lattice decoding. First the gap to capacity is shown to depend on the discriminant of the chosen division algebra; then class field theory is applied to build families of algebras with small discriminants. The key element in the construction is the choice of a sequence of division algebras whose centers are number fields with small root discriminants.Comment: Submitted to ISIT 201

    Fast-Decodable Asymmetric Space-Time Codes from Division Algebras

    Full text link
    Multiple-input double-output (MIDO) codes are important in the near-future wireless communications, where the portable end-user device is physically small and will typically contain at most two receive antennas. Especially tempting is the 4 x 2 channel due to its immediate applicability in the digital video broadcasting (DVB). Such channels optimally employ rate-two space-time (ST) codes consisting of (4 x 4) matrices. Unfortunately, such codes are in general very complex to decode, hence setting forth a call for constructions with reduced complexity. Recently, some reduced complexity constructions have been proposed, but they have mainly been based on different ad hoc methods and have resulted in isolated examples rather than in a more general class of codes. In this paper, it will be shown that a family of division algebra based MIDO codes will always result in at least 37.5% worst-case complexity reduction, while maintaining full diversity and, for the first time, the non-vanishing determinant (NVD) property. The reduction follows from the fact that, similarly to the Alamouti code, the codes will be subsets of matrix rings of the Hamiltonian quaternions, hence allowing simplified decoding. At the moment, such reductions are among the best known for rate-two MIDO codes. Several explicit constructions are presented and shown to have excellent performance through computer simulations.Comment: 26 pages, 1 figure, submitted to IEEE Trans. Inf. Theory, October 201

    Class Field Theoretic Methods in the Design of Lattice Signal Constellations

    Get PDF
    Siirretty Doriast
    corecore