7,044 research outputs found

    The boundary action of a sofic random subgroup of the free group

    Full text link
    We prove that the boundary action of a sofic random subgroup of a finitely generated free group is conservative. This addresses a question asked by Grigorchuk, Kaimanovich, and Nagnibeda, who studied the boundary actions of individual subgroups of the free group. Following their work, we also investigate the cogrowth and various limit sets associated to sofic random subgroups. We make heavy use of the correspondence between subgroups and their Schreier graphs, and central to our approach is an investigation of the asymptotic density of a given set inside of large neighborhoods of the root of a sofic random Schreier graph.Comment: 21 pages, 2 figures, made minor corrections, to appear in Groups, Geometry, and Dynamic

    Parameterized Algorithms for Modular-Width

    Full text link
    It is known that a number of natural graph problems which are FPT parameterized by treewidth become W-hard when parameterized by clique-width. It is therefore desirable to find a different structural graph parameter which is as general as possible, covers dense graphs but does not incur such a heavy algorithmic penalty. The main contribution of this paper is to consider a parameter called modular-width, defined using the well-known notion of modular decompositions. Using a combination of ILPs and dynamic programming we manage to design FPT algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path and Hamiltonian cycle), which are W-hard for both clique-width and its recently introduced restriction, shrub-depth. We thus argue that modular-width occupies a sweet spot as a graph parameter, generalizing several simpler notions on dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with arXiv:1304.5479 by other author

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat
    corecore