8 research outputs found

    Denotational semantics with nominal scott domains

    Get PDF
    When defining computations over syntax as data, one often runs into tedious issues concerning α -equivalence and semantically correct manipulations of binding constructs. Here we study a semantic framework in which these issues can be dealt with automatically by the programming language. We take the user-friendly “nominal” approach in which bound objects are named. In particular, we develop a version of Scott domains within nominal sets and define two programming languages whose denotational semantics are based on those domains. The first language, λν -PCF, is an extension of Plotkin’s PCF with names that can be swapped, tested for equality and locally scoped; although simple, it already exposes most of the semantic subtleties of our approach. The second language, PNA, extends the first with name abstraction and concretion so that it can be used for metaprogramming over syntax with binders. For both languages, we prove a full abstraction result for nominal Scott domains analogous to Plotkin’s classic result about PCF and conventional Scott domains: two program phrases have the same observable operational behaviour in all contexts if and only if they denote equal elements of the nominal Scott domain model. This is the first full abstraction result we know of for languages combining higher-order functions with some form of locally scoped names which uses a domain theory based on ordinary extensional functions, rather than using the more intensional approach of game semantics. To obtain full abstraction, we need to add two functionals, one for existential quantification over names and one for “definite description” over names. Only adding one of them is not enough, as we give counter-examples to full abstraction in both cases.This work is supported by a Gates Cambridge Scholarship and the ERC Advanced Grant Events, Causality and Symmetry (ECSYM)This version is the author accepted manuscript. The final version is available from ACM at http://dl.acm.org/citation.cfm?id=2629529

    Completeness of Nominal PROPs

    Get PDF
    We introduce nominal string diagrams as string diagrams internal in the category of nominal sets. This leads us to define nominal PROPs and nominal monoidal theories. We show that the categories of ordinary PROPs and nominal PROPs are equivalent. This equivalence is then extended to symmetric monoidal theories and nominal monoidal theories, which allows us to transfer completeness results between ordinary and nominal calculi for string diagrams

    Completeness of Nominal PROPs

    Get PDF
    We introduce nominal string diagrams as string diagrams internal in the category of nominal sets. This leads us to define nominal PROPs and nominal monoidal theories. We show that the categories of ordinary PROPs and nominal PROPs are equivalent. This equivalence is then extended to symmetric monoidal theories and nominal monoidal theories, which allows us to transfer completeness results between ordinary and nominal calculi for string diagrams.Comment: arXiv admin note: text overlap with arXiv:1904.0753

    Scalar and Vectorial mu-calculus with Atoms

    Get PDF
    We study an extension of modal μ\mu-calculus to sets with atoms and we study its basic properties. Model checking is decidable on orbit-finite structures, and a correspondence to parity games holds. On the other hand, satisfiability becomes undecidable. We also show expressive limitations of atom-enriched μ\mu-calculi, and explain how their expressive power depends on the structure of atoms used, and on the choice between basic or vectorial syntax

    Completeness of Nominal PROPs

    Get PDF
    We introduce nominal string diagrams as string diagrams internal in the category of nominal sets. This leads us to define nominal PROPs and nominal monoidal theories. We show that the categories of ordinary PROPs and nominal PROPs are equivalent. This equivalence is then extended to symmetric monoidal theories and nominal monoidal theories, which allows us to transfer completeness results between ordinary and nominal calculi for string diagrams

    Scalar and Vectorial mu-calculus with Atoms

    Get PDF
    We study an extension of modal μ\mu-calculus to sets with atoms and we study its basic properties. Model checking is decidable on orbit-finite structures, and a correspondence to parity games holds. On the other hand, satisfiability becomes undecidable. We also show expressive limitations of atom-enriched μ\mu-calculi, and explain how their expressive power depends on the structure of atoms used, and on the choice between basic or vectorial syntax
    corecore