3 research outputs found

    Denoising autoencoder with modulated lateral connections learns invariant representations of natural images

    Full text link
    Suitable lateral connections between encoder and decoder are shown to allow higher layers of a denoising autoencoder (dAE) to focus on invariant representations. In regular autoencoders, detailed information needs to be carried through the highest layers but lateral connections from encoder to decoder relieve this pressure. It is shown that abstract invariant features can be translated to detailed reconstructions when invariant features are allowed to modulate the strength of the lateral connection. Three dAE structures with modulated and additive lateral connections, and without lateral connections were compared in experiments using real-world images. The experiments verify that adding modulated lateral connections to the model 1) improves the accuracy of the probability model for inputs, as measured by denoising performance; 2) results in representations whose degree of invariance grows faster towards the higher layers; and 3) supports the formation of diverse invariant poolings.Comment: Presentation at ICLR 2015 worksho

    Theta-RBM: Unfactored Gated Restricted Boltzmann Machine for Rotation-Invariant Representations

    Full text link
    Learning invariant representations is a critical task in computer vision. In this paper, we propose the Theta-Restricted Boltzmann Machine ({\theta}-RBM in short), which builds upon the original RBM formulation and injects the notion of rotation-invariance during the learning procedure. In contrast to previous approaches, we do not transform the training set with all possible rotations. Instead, we rotate the gradient filters when they are computed during the Contrastive Divergence algorithm. We formulate our model as an unfactored gated Boltzmann machine, where another input layer is used to modulate the input visible layer to drive the optimisation procedure. Among our contributions is a mathematical proof that demonstrates that {\theta}-RBM is able to learn rotation-invariant features according to a recently proposed invariance measure. Our method reaches an invariance score of ~90% on mnist-rot dataset, which is the highest result compared with the baseline methods and the current state of the art in transformation-invariant feature learning in RBM. Using an SVM classifier, we also showed that our network learns discriminative features as well, obtaining ~10% of testing error.Comment: 9 pages, 2 figures, 3 table

    Semi-Supervised Learning with Ladder Networks

    Full text link
    We combine supervised learning with unsupervised learning in deep neural networks. The proposed model is trained to simultaneously minimize the sum of supervised and unsupervised cost functions by backpropagation, avoiding the need for layer-wise pre-training. Our work builds on the Ladder network proposed by Valpola (2015), which we extend by combining the model with supervision. We show that the resulting model reaches state-of-the-art performance in semi-supervised MNIST and CIFAR-10 classification, in addition to permutation-invariant MNIST classification with all labels.Comment: Revised denoising function, updated results, fixed typo
    corecore