112 research outputs found

    On the Incoercibility of Digital Signatures

    Get PDF

    Encryption schemes secure against chosen-ciphertext selective opening attacks

    Get PDF
    Imagine many small devices send data to a single receiver, encrypted using the receiver's public key. Assume an adversary that has the power to adaptively corrupt a subset of these devices. Given the information obtained from these corruptions, do the ciphertexts from uncorrupted devices remain secure? Recent results suggest that conventional security notions for encryption schemes (like IND-CCA security) do not suffice in this setting. To fill this gap, the notion of security against selective-opening attacks (SOA security) has been introduced. It has been shown that lossy encryption implies SOA security against a passive, i.e., only eavesdropping and corrupting, adversary (SO-CPA). However, the known results on SOA security against an active adversary (SO-CCA) are rather limited. Namely, while there exist feasibility results, the (time and space) complexity of currently known SO-C

    Timed Encryption and Its Application

    Get PDF
    In this paper, we propose a new notion of timed encryption, in which the encryption is secure within time tt while it is totally insecure after some time T>t.T>t. We are interested in the case where tt and TT are both polynomial. We propose a concrete construction that is provably secure in the random oracle model. We show that it can be generically (although inefficient) constructed from a timed commitment of Boneh and Naor (CRYPTO\u2700). Finally, we apply this primitive to construct a deniable secure key exchange protocol, where the deniability and secrecy both hold adaptively and the adversary can conduct session state reveal attacks and eavesdropping attacks in the non-eraser model. Our protocol is the first to achieve each of the following properties: adaptive deniability admitting eavesdropping attacks and deniability admitting session state reveal attacks in the non-eraser model. Our protocol is constructed using a timing restriction (inherited from the timed encryption). However, the requirement is rather weak. It essentially asks a user to respond to a ciphertext as soon as possible and hence does not artificially cause any delay. Our usage of timed encryption for the deniability is to use the forceful decryption to obtain the plaintext and hence does not use any random oracle assumption (even if the secrecy proof needs this)

    Encryption Schemes Secure against Chosen-Ciphertext Selective Opening Attacks

    Get PDF
    textabstractImagine many small devices send data to a single receiver, encrypted using the receiver's public key. Assume an adversary that has the power to adaptively corrupt a subset of these devices. Given the information obtained from these corruptions, do the ciphertexts from uncorrupted devices remain secure? Recent results suggest that conventional security notions for encryption schemes (like IND-CCA security) do not suffice in this setting. To fill this gap, the notion of security against selective-opening attacks (SOA security) has been introduced. It has been shown that lossy encryption implies SOA security against a passive, i.e., only eavesdropping and corrupting, adversary (SO-CPA). However, the known results on SOA security against an active adversary (SO-CCA) are rather limited. Namely, while there exist feasibility results, the (time and space) complexity of currently known SO-CCA secure schemes depends on the number of devices in the setting above. In this contribution, we devise a new solution to the selective opening problem that does not build on lossy encryption. Instead, we combine techniques from non-committing encryption and hash proof systems with a new technique (dubbed ``cross-authentication codes'') to glue several ciphertext parts together. The result is a rather practical SO-CCA secure public-key encryption scheme that does not suffer from the efficiency drawbacks of known schemes. Since we build upon hash proof systems, our scheme can be instantiated using standard number-theoretic assumptions such as decisional Diffie-Hellman (DDH), decisional composite residuosity (DCR), and quadratic residuosity (QR). Besides, we construct a conceptually very simple and comparatively efficient SO-CPA secure scheme from (slightly enhanced) trapdoor one-way permutations. We stress that our schemes are completely independent of the number of challenge ciphertexts, and we do not make assumptions about the underlying message distribution (beyond being efficiently samplable). In particular, we do not assume efficient conditional re-samplability of the message distribution. Hence, our schemes are secure in arbitrary settings, even if it is not known in advance how many ciphertexts might be considered for corruptions

    Bi-Deniable Inner Product Encryption from LWE

    Get PDF
    Deniable encryption (Canetti et al. CRYPTO \u2797) is an intriguing primitive that provides a security guarantee against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and security against selective opening attacks. Despite its conceptual usefulness, our understanding of how to construct deniable primitives under standard assumptions is restricted. In particular, from standard assumptions such as Learning with Errors (LWE), we have only multi-distributional or non-negligible advantage deniable encryption schemes, whereas with the much stronger assumption of indistinguishable obfuscation, we can obtain at least fully-secure sender-deniable PKE and computation. How to achieve deniability for other more advanced encryption schemes under standard assumptions remains an interesting open question. In this work, we construct a bi-deniable inner product encryption (IPE) in the multi-distributional model without relying on obfuscation as a black box. Our techniques involve new ways of manipulating Gaussian noise, and lead to a significantly tighter analysis of noise growth in Dual Regev type encryption schemes. We hope these ideas can give insight into achieving deniability and related properties for further, advanced cryptographic constructions under standard assumptions

    Deniable Cryptosystems: Simpler Constructions and Achieving Leakage Resilience

    Get PDF
    Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive, which provides security guarantee against coercion by allowing a sender to convincingly open the ciphertext into a fake message. Despite the notable result by Sahai and Waters STOC ’14 and other efforts in functionality extension, all the deniable public key encryption (DPKE) schemes suffer from intolerable overhead due to the heavy building blocks, e.g., translucent sets or indistinguishability obfuscation. Besides, none of them considers the possible damage from leakage in the real world, obstructing these protocols from practical use. To fill the gap, in this work we first present a simple and generic approach of sender-DPKE from ciphertext-simulatable encryption, which can be instantiated with nearly all the common PKE schemes. The core of this design is a newly-designed framework for flipping a bit-string that offers inverse polynomial distinguishability. Then we theoretically expound and experimentally show how classic side-channel attacks (timing or simple power attacks), can help the coercer to break deniability, along with feasible countermeasures

    On the Incoercibility of Digital Signatures

    Get PDF
    We introduce incoercible digital signature schemes, a variant of a standard digital signature. Incoercible signatures enable signers, when coerced to produce a signature for a message chosen by an attacker, to generate fake signatures that are indistinguishable from real signatures, even if the signer is compelled to reveal their full history (including their secret signing keys and any randomness used to produce keys/signatures) to the attacker. Additionally, we introduce an authenticator that can detect fake signatures, which ensures that coercion is identified. We present a formal security model for incoercible signature schemes that comprises an established definition of unforgeability and captures new notions of weak receipt-freeness, strong receipt-freeness and coercion-resistance. We demonstrate that an incoercible signature scheme can be viewed as a transformation of any generic signature scheme. Indeed, we present two incoercible signature scheme constructions that are built from a standard signature scheme and a sender-deniable encryption scheme. We prove that our first construction satisfies coercion-resistance, and our second satisfies strong receipt-freeness. We conclude by presenting an extension to our security model: we show that our security model can be extended to the designated verifier signature scheme setting in an intuitive way as the designated verifier can assume the role of the authenticator and detect coercion during the verification process

    Deniable Attribute Based Encryption for Branching Programs from LWE

    Get PDF
    Deniable encryption (Canetti et al. CRYPTO \u2797) is an intriguing primitive that provides a security guarantee against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and security against selective opening attacks. Despite its conceptual usefulness, our understanding of how to construct deniable primitives under standard assumptions is restricted. In particular from standard lattice assumptions, i.e. Learning with Errors (LWE), we have only flexibly and non-negligible advantage deniable public-key encryption schemes, whereas with the much stronger assumption of indistinguishable obfuscation, we can obtain at least fully sender-deniable PKE and computation. How to achieve deniability for other more advanced encryption schemes under standard assumptions remains an interesting open question. In this work, we construct a flexibly bi-deniable Attribute-Based Encryption (ABE) scheme for all polynomial-size Branching Programs from LWE. Our techniques involve new ways of manipulating Gaussian noise that may be of independent interest, and lead to a significantly sharper analysis of noise growth in Dual Regev type encryption schemes. We hope these ideas give insight into achieving deniability and related properties for further, advanced cryptographic systems from lattice assumptions

    Simulation-based Selective Opening CCA Security for PKE from Key Encapsulation Mechanisms

    Get PDF
    We study simulation-based, selective opening security against chosen-ciphertext attacks (SIM-SO-CCA security) for public key encryption (PKE). In a selective opening, chosen-ciphertext attack (SO-CCA), an adversary has access to a decryption oracle, sees a vector of ciphertexts, adaptively chooses to open some of them, and obtains the corresponding plaintexts and random coins used in the creation of the ciphertexts. The SIM-SO-CCA notion captures the security of unopened ciphertexts with respect to probabilistic polynomial-time (ppt) SO-CCA adversaries in a semantic way: what a ppt SO-CCA adversary can compute can also be simulated by a ppt simulator with access only to the opened messages. Building on techniques used to achieve weak deniable encryption and non-committing encryption, Fehr et al. (Eurocrypt 2010) presented an approach to constructing SIM-SO-CCA secure PKE from extended hash proof systems (EHPSs), collision-resistant hash functions and an information-theoretic primitive called Cross Authentication Codes (XACs). We generalize their approach by introducing a special type of Key Encapsulation Mechanism (KEM) and using it to build SIM-SO-CCA secure PKE. We investigate what properties are needed from the KEM to achieve SIM-SO-CCA security. We also give three instantiations of our construction. The first uses hash proof systems, the second relies on the n-Linear assumption, and the third uses indistinguishability obfuscation (iO) in combination with extracting, puncturable Pseudo-Random Functions in a similar way to Sahai and Waters (STOC 2014). Our results establish the existence of SIM-SO-CCA secure PKE assuming only the existence of one-way functions and iO. This result further highlights the simplicity and power of iO in constructing different cryptographic primitives
    • …
    corecore