34 research outputs found

    Demystifying Fixed k-Nearest Neighbor Information Estimators

    Full text link
    Estimating mutual information from i.i.d. samples drawn from an unknown joint density function is a basic statistical problem of broad interest with multitudinous applications. The most popular estimator is one proposed by Kraskov and St\"ogbauer and Grassberger (KSG) in 2004, and is nonparametric and based on the distances of each sample to its kthk^{\rm th} nearest neighboring sample, where kk is a fixed small integer. Despite its widespread use (part of scientific software packages), theoretical properties of this estimator have been largely unexplored. In this paper we demonstrate that the estimator is consistent and also identify an upper bound on the rate of convergence of the bias as a function of number of samples. We argue that the superior performance benefits of the KSG estimator stems from a curious "correlation boosting" effect and build on this intuition to modify the KSG estimator in novel ways to construct a superior estimator. As a byproduct of our investigations, we obtain nearly tight rates of convergence of the â„“2\ell_2 error of the well known fixed kk nearest neighbor estimator of differential entropy by Kozachenko and Leonenko.Comment: 55 pages, 8 figure

    Conditional Mutual Information Neural Estimator

    Full text link
    Several recent works in communication systems have proposed to leverage the power of neural networks in the design of encoders and decoders. In this approach, these blocks can be tailored to maximize the transmission rate based on aggregated samples from the channel. Motivated by the fact that, in many communication schemes, the achievable transmission rate is determined by a conditional mutual information term, this paper focuses on neural-based estimators for this information-theoretic quantity. Our results are based on variational bounds for the KL-divergence and, in contrast to some previous works, we provide a mathematically rigorous lower bound. However, additional challenges with respect to the unconditional mutual information emerge due to the presence of a conditional density function which we address here.Comment: To be presented at ICASSP 202
    corecore