15 research outputs found

    Democratic Fair Allocation of Indivisible Goods

    Full text link
    We study the problem of fairly allocating indivisible goods to groups of agents. Agents in the same group share the same set of goods even though they may have different preferences. Previous work has focused on unanimous fairness, in which all agents in each group must agree that their group's share is fair. Under this strict requirement, fair allocations exist only for small groups. We introduce the concept of democratic fairness, which aims to satisfy a certain fraction of the agents in each group. This concept is better suited to large groups such as cities or countries. We present protocols for democratic fair allocation among two or more arbitrarily large groups of agents with monotonic, additive, or binary valuations. For two groups with arbitrary monotonic valuations, we give an efficient protocol that guarantees envy-freeness up to one good for at least 1/21/2 of the agents in each group, and prove that the 1/21/2 fraction is optimal. We also present other protocols that make weaker fairness guarantees to more agents in each group, or to more groups. Our protocols combine techniques from different fields, including combinatorial game theory, cake cutting, and voting.Comment: Appears in the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence (IJCAI-ECAI), 201

    How to Cut a Cake Fairly: A Generalization to Groups

    Full text link
    A fundamental result in cake cutting states that for any number of players with arbitrary preferences over a cake, there exists a division of the cake such that every player receives a single contiguous piece and no player is left envious. We generalize this result by showing that it is possible to partition the players into groups of any desired sizes and divide the cake among the groups, so that each group receives a single contiguous piece and no player finds the piece of another group better than that of the player's own group

    Cutting a Cake Fairly for Groups Revisited

    Full text link
    Cake cutting is a classic fair division problem, with the cake serving as a metaphor for a heterogeneous divisible resource. Recently, it was shown that for any number of players with arbitrary preferences over a cake, it is possible to partition the players into groups of any desired size and divide the cake among the groups so that each group receives a single contiguous piece and every player is envy-free. For two groups, we characterize the group sizes for which such an assignment can be computed by a finite algorithm, showing that the task is possible exactly when one of the groups is a singleton. We also establish an analogous existence result for chore division, and show that the result does not hold for a mixed cake

    Strategyproof Mechanisms For Group-Fair Facility Location Problems

    Full text link
    We study the facility location problems where agents are located on a real line and divided into groups based on criteria such as ethnicity or age. Our aim is to design mechanisms to locate a facility to approximately minimize the costs of groups of agents to the facility fairly while eliciting the agents' locations truthfully. We first explore various well-motivated group fairness cost objectives for the problems and show that many natural objectives have an unbounded approximation ratio. We then consider minimizing the maximum total group cost and minimizing the average group cost objectives. For these objectives, we show that existing classical mechanisms (e.g., median) and new group-based mechanisms provide bounded approximation ratios, where the group-based mechanisms can achieve better ratios. We also provide lower bounds for both objectives. To measure fairness between groups and within each group, we study a new notion of intergroup and intragroup fairness (IIF) . We consider two IIF objectives and provide mechanisms with tight approximation ratios

    Online Algorithms for Matchings with Proportional Fairness Constraints and Diversity Constraints

    Full text link
    Matching problems with group-fairness constraints and diversity constraints have numerous applications such as in allocation problems, committee selection, school choice, etc. Moreover, online matching problems have lots of applications in ad allocations and other e-commerce problems like product recommendation in digital marketing. We study two problems involving assigning {\em items} to {\em platforms}, where items belong to various {\em groups} depending on their attributes; the set of items are available offline and the platforms arrive online. In the first problem, we study online matchings with {\em proportional fairness constraints}. Here, each platform on arrival should either be assigned a set of items in which the fraction of items from each group is within specified bounds or be assigned no items; the goal is to assign items to platforms in order to maximize the number of items assigned to platforms. In the second problem, we study online matchings with {\em diversity constraints}, i.e. for each platform, absolute lower bounds are specified for each group. Each platform on arrival should either be assigned a set of items that satisfy these bounds or be assigned no items; the goal is to maximize the set of platforms that get matched. We study approximation algorithms and hardness results for these problems. The technical core of our proofs is a new connection between these problems and the problem of matchings in hypergraphs. Our experimental evaluation shows the performance of our algorithms on real-world and synthetic datasets exceeds our theoretical guarantees.Comment: 16 pages, Full version of a paper accepted in ECAI 202

    Almost Group Envy-free Allocation of Indivisible Goods and Chores

    Get PDF
    We consider a multi-agent resource allocation setting in which an agent's utility may decrease or increase when an item is allocated. We take the group envy-freeness concept that is well-established in the literature and present stronger and relaxed versions that are especially suitable for the allocation of indivisible items. Of particular interest is a concept called group envy-freeness up to one item (GEF1). We then present a clear taxonomy of the fairness concepts. We study which fairness concepts guarantee the existence of a fair allocation under which preference domain. For two natural classes of additive utilities, we design polynomial-time algorithms to compute a GEF1 allocation. We also prove that checking whether a given allocation satisfies GEF1 is coNP-complete when there are either only goods, only chores or both
    corecore