4 research outputs found

    Delayed-time domain impedance boundary conditions (D-TDIBC)

    Get PDF
    Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navierā€“Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001ā€“2004 [1], [2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics

    A novel modal expansion method for low-order modeling of thermoacoustic instabilities in complex geometries

    Get PDF
    This work proposes an improvement to existing methods based on modal expansions used for the prediction of thermoacoustic instabilities in zero Mach number flow conditions. Whereas the orthogonal basis made of the acoustic eigenmodes of the domain bounded by rigid walls is classically used, an alternative method based on a modal expansion onto an over-complete set of acoustic eigenmodes is proposed. This allows avoiding the misrepresentation of the acoustic velocity field often observed near non rigid-wall boundaries. A Low Order Model network utilizing a state-space framework is then built upon this novel type of modal expansion. Several test cases, going from non reacting ducts to a complex geometry with combustion, are studied to assess the potential of the approach. The methodology not only successfully mitigates the misrepresentation in the acoustic field in the presence of non-rigid-wall boundaries, but it also drastically improves the convergence speed. The modularity of the method and its ability to handle complex geometries are illustrated by considering a configuration featuring an annular chamber, an annular plenum, as well as multiple burners. This novel technique is expected to bring worthy improvements to existing Low Order Models using modal expansions for the prediction of combustion instabilities

    Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations

    Get PDF
    Time-domain impedance boundary conditions (TDIBCs) can be enforced using the impeda-nce, the admittance, or the scattering operator. This article demonstrates the computational advantage of the last, even for nonlinear TDIBCs, with the linearized Euler equations. This is achieved by a systematic semi-discrete energy analysis of the weak enforcement of a generic nonlinear TDIBC in a discontinuous Galerkin finite element method. In particular, the analysis highlights that the sole definition of a discrete model is not enough to fully define a TDIBC. To support the analysis, an elementary physical nonlinear scattering operator is derived and its computational properties are investigated in an impedance tube. Then, the derivation of time-delayed broadband TDIBCs from physical reflection coefficient models is carried out for single degree of freedom acoustical liners. A high-order discretization of the derived time-local formulation, which consists in composing a set of ordinary differential equations with a transport equation, is applied to two flow duct

    ModƩlisation Thermoacoustique de Bas Ordre et Simulation de la Fonction de Transfert d'une Flamme Diphasique

    Get PDF
    Les instabiliteĢs thermoacoustiques continuent dā€™eĢ‚tre un obstacle majeur dans le deĢveloppement des systeĢ€mes de combustion des turbines aĢ€ gaz. Ces instabiliteĢs sont caracteĢriseĢes par des oscillations de pression de grande amplitude dans la chambre de combustion. Elles sont indĆ©sirables car elles entraiĢ‚nent de fortes vibrations augmentant le bruit et les Ć©missions de polluants, provoquant des contraintes thermiques et meĢcaniques excessives sur les composants de la chambre de combustion, voire menacĢ§ant lā€™inteĢgriteĢ structurelle du systeĢ€me complet. La simulation aux grandes eĢchelles (LES) sā€™est aveĢreĢe eĢ‚tre un outil puissant capable de preĢdire de nombreux pheĢnomeĢ€nes de combustion instationnaire, y compris les instabiliteĢs. Cependant, les couĢ‚ts de calcul eĢleveĢs associeĢs empeĢ‚chent cette approche dā€™eĢ‚tre utiliseĢe en phase de conception pour analyser toutes les conceptions possibles et les conditions de fonctionnement auxquelles les instabiliteĢs restent extreĢ‚mement sensibles. Cā€™est pourquoi les modeĢ€les de bas ordre (LOM) sont preĢcieux et compleĢ€tent bien les LES, en particulier pendant les eĢtapes de preĢconception de la chambre de combustion. Bien que la plupart des outils LOM disponibles effectuent des simplifications physiques importantes (par exemple, lineĢarisation de lā€™acoustique, reĢponse aĢ€ la flamme), ils utilisent eĢgalement geĢneĢralement des geĢomeĢtries trop simplifieĢes. Lā€™un des principaux objectifs de ce travail est de remeĢdier aĢ€ cette dernieĢ€re limitation et dā€™ameĢliorer les techniques LOM existantes pour pouvoir geĢrer des geĢomeĢtries reĢalistes complexes. Une grande partie du travail sā€™articule autour du deĢveloppement et de la validation dā€™un nouvel outil de modeĢlisation de reĢseaux acoustiques baseĢ sur des ex- pansions modales (Galerkin Series) et des meĢthodes dā€™espace dā€™eĢtats (viz. STORM) pour preĢdire et analyser les instabiliteĢs. Dans STORM, un systeĢ€me complexe aĢ€ analyser est deĢcomposeĢ et repreĢsenteĢ comme un reĢseau dā€™eĢleĢments geĢomeĢtriques plus simples (sous-domaines), de connexion (couplage), de flamme et dā€™eĢleĢments dā€™impeĢdance. Les caracteĢristiques uniques de STORM sont la technique dā€™expansion modale sur des Frame reĢcemment introduite pour modeĢliser lā€™acoustique dans les sous-domaines du reĢseau et la meĢthodologie dite des connexions spectrales de surface qui a eĢteĢ deĢveloppeĢe reĢcemment au CERFACS. Ensemble, ils permettent des inter- connexions transparentes entre les sous-domaines avec une acoustique 1D/2D/3D et construisent des reĢseaux repreĢsentant des configurations complexes pertinentes pour lā€™industrie. Les meĢthodes dā€™approximation rationnelle sont discuteĢes pour incorporer des modeĢ€les reĢalistes dā€™interaction flamme/acoustique (cā€™est-aĢ€-dire, les fonctions de transfert de flamme (FTF) dans les reĢseaux STORM. Lā€™importance de quelques contraintes physiques, en particulier la causaliteĢ, dans les algorithmes deĢri- vant ces modeĢ€les de reĢponse de flamme dā€™ordre infeĢrieur, dans le domaine temporel, dans lā€™espace dā€™eĢtats et baseĢs sur les donneĢes aĢ€ partir de donneĢes de simulation expeĢrimentales ou dā€™ordre eĢleveĢ, est mise en eĢvidence. Un type speĢcial dā€™eĢleĢment dā€™impeĢdance de reĢseau, DECBC (Delayed Entropy Coupled Boundary Condition), est eĢgalement deĢveloppeĢ pour faciliter la preĢdiction des instabiliteĢs mixtes entropie- acoustique. Dans lā€™ensemble, STORM preĢsente un outil efficace, modulaire et flexi- ble pour preĢdire les instabiliteĢs thermoacoustiques et devrait aider aĢ€ deĢterminer les reĢgimes de stabiliteĢ et les strateĢgies de controĢ‚le passif optimales. Dans la deuxieĢ€me partie mineure de la theĢ€se, le forcĢ§age acoustique de la flamme de pulveĢrisation tourbillonnante turbulente est simuleĢ en utilisant lā€™approche Euler- Lagrange (EL) LES. Lā€™objectif eĢtait de calculer le FTF et dā€™eĢvaluer la pertinence du cadre de modeĢlisation de la combustion diphasique EL-LES existant pour un tel probleĢ€me dā€™identification de systeĢ€me. Des travaux reĢcents ont deĢmontreĢ le potentiel de EL-LES pour preĢdire avec preĢcision lā€™instabiliteĢ auto-entretenue. Cependant, les simulations forceĢes preĢsentent certaines difficulteĢs et la FTF obtenue numeĢriquement sā€™eĢcarte des valeurs de reĢfeĢrence expeĢrimentales dā€™environ 20 aĢ€ 30%. Les reĢsultats restent sensibles, en geĢneĢral, aux parameĢ€tres de modeĢlisation, si bien que dā€™autres investigations seront neĢcessaires pour ameĢliorer les modeĢ€les et la fideĢliteĢ des preĢvisions
    corecore