1,310 research outputs found

    IP geolocation in metropolitan areas

    Get PDF

    IP Geolocation in Metropolitan Areas

    Get PDF
    In this thesis, we propose a robust methodology to geolocate a target IP Address in a metropolitan area. We model the problem as a Pattern Recognition problem and present algorithms that can extract patterns and match them for inferring the geographic location of target's IP Address. The first algorithm is a relatively non-invasive method called Pattern Based Geolocation (PBG) which models the distribution of Round Trip Times (RTTs) to a target and matches them to that of the nearby landmarks to deduce the target's location. PBG builds Probability Mass Functions (PMFs) to model the distribution of RTTs. For comparing PMFs, we propose a novel `Shifted Symmetrized Divergence' distance metric which is a modified form of Kullback-Leibler divergence. It is symmetric as well as invariant to shifts. PBG algorithm works in almost stealth mode and leaves almost undetectable signature in network traffic. The second algorithm, Perturbation Augmented PBG (PAPBG), gives a higher resolution in the location estimate using additional perturbation traffic. The goal of this algorithm is to induce a stronger signature of background traffic in the vicinity of the target, and then detect it in the RTT sequences collected. At the cost of being intrusive, this algorithm improves the resolution of PBG by approximately 20-40%. We evaluate the performance of PBG and PAPBG on real data collected from 20 machines distributed over 700 square miles large Washington-Baltimore metropolitan area. We compare the performance of the proposed algorithms with existing measurement based geolocation techniques. Our experiments show that PBG shows marked improvements over current techniques and can geolocate a target IP address to within 2-4 miles of its actual location. And by sending an additional traffic in the network PAPBG improves the resolution to within 1-3 miles

    Measuring the Relationships between Internet Geography and RTT

    Get PDF
    When designing distributed systems and Internet protocols, designers can benefit from statistical models of the Internet that can be used to estimate their performance. However, it is frequently impossible for these models to include every property of interest. In these cases, model builders have to select a reduced subset of network properties, and the rest will have to be estimated from those available. In this paper we present a technique for the analysis of Internet round trip times (RTT) and its relationship with other geographic and network properties. This technique is applied on a novel dataset comprising ∼19 million RTT measurements derived from ∼200 million RTT samples between ∼54 thousand DNS servers. Our main contribution is an information-theoretical analysis that allows us to determine the amount of information that a given subset of geographic or network variables (such as RTT or great circle distance between geolocated hosts) gives about other variables of interest. We then provide bounds on the error that can be expected when using statistical estimators for the variables of interest based on subsets of other variables

    Advancing security information and event management frameworks in managed enterprises using geolocation

    Get PDF
    Includes bibliographical referencesSecurity Information and Event Management (SIEM) technology supports security threat detection and response through real-time and historical analysis of security events from a range of data sources. Through the retrieval of mass feedback from many components and security systems within a computing environment, SIEMs are able to correlate and analyse events with a view to incident detection. The hypothesis of this study is that existing Security Information and Event Management techniques and solutions can be complemented by location-based information provided by feeder systems. In addition, and associated with the introduction of location information, it is hypothesised that privacy-enforcing procedures on geolocation data in SIEMs and meta- systems alike are necessary and enforceable. The method for the study was to augment a SIEM, established for the collection of events in an enterprise service management environment, with geo-location data. Through introducing the location dimension, it was possible to expand the correlation rules of the SIEM with location attributes and to see how this improved security confidence. An important co-consideration is the effect on privacy, where location information of an individual or system is propagated to a SIEM. With a theoretical consideration of the current privacy directives and regulations (specifically as promulgated in the European Union), privacy supporting techniques are introduced to diminish the accuracy of the location information - while still enabling enhanced security analysis. In the context of a European Union FP7 project relating to next generation SIEMs, the results of this work have been implemented based on systems, data, techniques and resilient features of the MASSIF project. In particular, AlienVault has been used as a platform for augmentation of a SIEM and an event set of several million events, collected over a three month period, have formed the basis for the implementation and experimentation. A "brute-force attack" misuse case scenario was selected to highlight the benefits of geolocation information as an enhancement to SIEM detection (and false-positive prevention). With respect to privacy, a privacy model is introduced for SIEM frameworks. This model utilises existing privacy legislation, that is most stringent in terms of privacy, as a basis. An analysis of the implementation and testing is conducted, focusing equally on data security and privacy, that is, assessing location-based information in enhancing SIEM capability in advanced security detection, and, determining if privacy-enforcing procedures on geolocation in SIEMs and other meta-systems are achievable and enforceable. Opportunities for geolocation enhancing various security techniques are considered, specifically for solving misuse cases identified as existing problems in enterprise environments. In summary, the research shows that additional security confidence and insight can be achieved through the augmentation of SIEM event information with geo-location information. Through the use of spatial cloaking it is also possible to incorporate location information without com- promising individual privacy. Overall the research reveals that there are significant benefits for SIEMs to make use of geo-location in their analysis calculations, and that this can be effectively conducted in ways which are acceptable to privacy considerations when considered against prevailing privacy legislation and guidelines

    Internet Protocol Geolocation: Development of a Delay-Based Hybrid Methodology for Locating the Geographic Location of a Network Node

    Get PDF
    Internet Protocol Geolocation (IP Geolocation), the process of determining the approximate geographic location of an IP addressable node, has proven useful in a wide variety of commercial applications. Commercial applications of IP Geolocation include market research, redirection for performance enhancement, restricting content, and combating fraud. The potential for military applications include securing remote access via geographic authentication, intelligence collection, and cyber attack attribution. IP Geolocation methods can be divided into three basic categories based upon what information is used to determine the geographic location of the given IP address: 1) Information contained in databases, 2) information that is leaked during connections with the IP of interest, and 3) network-based routing and timing information. This thesis focuses upon an analysis in the third category: delay-based methods. Specifically, a comparative analysis of the three existing delay-based IP Geolocation methods: Upperbound Multilateration (UBM), Constraint Based Geolocation (CBG), and Time to Location Heuristic (TTLH) is conducted. Based upon analysis of the results, a new hybrid methodology is proposed that combines the three existing methods to improve the accuracy when conducting IP Geolocation. Simulations results showed that the new hybrid methodology TTLH method improved the success rate from 80.15% to 91.66% when compared to the shotgun TTLH method

    How to Catch when Proxies Lie: Verifying the Physical Locations of Network Proxies with Active Geolocation

    Get PDF
    Internet users worldwide rely on commercial network proxies both to conceal their true location and identity, and to control their apparent location. Their reasons range from mundane to security-critical. Proxy operators offer no proof that their advertised server locations are accurate. IP-to-location databases tend to agree with the advertised locations, but there have been many reports of serious errors in such databases. In this study we estimate the locations of 2269 proxy servers from ping-time measurements to hosts in known locations, combined with AS and network information. These servers are operated by seven proxy services, and, according to the operators, spread over 222 countries and territories. Our measurements show that one-third of them are definitely not located in the advertised countries, and another third might not be. Instead, they are concentrated in countries where server hosting is cheap and reliable (e.g. Czech Republic, Germany, Netherlands, UK, USA). In the process, we address a number of technical challenges with applying active geolocation to proxy servers, which may not be directly pingable, and may restrict the types of packets that can be sent through them, e.g. forbidding traceroute. We also test three geolocation algorithms from previous literature, plus two variations of our own design, at the scale of the whole world
    • …
    corecore