32,164 research outputs found

    Reverse Engineering TCP/IP-like Networks using Delay-Sensitive Utility Functions

    Get PDF
    TCP/IP can be interpreted as a distributed primal-dual algorithm to maximize aggregate utility over source rates. It has recently been shown that an equilibrium of TCP/IP, if it exists, maximizes the same delay-insensitive utility over both source rates and routes, provided pure congestion prices are used as link costs in the shortest-path calculation of IP. In practice, however, pure dynamic routing is never used and link costs are weighted sums of both static as well as dynamic components. In this paper, we introduce delay-sensitive utility functions and identify a class of utility functions that such a TCP/IP equilibrium optimizes. We exhibit some counter-intuitive properties that any class of delay-sensitive utility functions optimized by TCP/IP necessarily possess. We prove a sufficient condition for global stability of routing updates for general networks. We construct example networks that defy conventional wisdom on the effect of link cost parameters on network stability and utility

    Congestion Managed Multicast Routing in Wireless Mesh Network

    Get PDF
    To provide broad band connectivity to the mobile users and to build a self-structured network, where it is not possible to have wired network, “Wireless Mesh Networks” are the most vital suitable technology. Routing in Wireless Mesh Networks is a multi-objective nonlinear optimization problem with some constraints. We explore multicast routing for least-cost, delay-sensitive and congestion-sensitive in optimizing the routing in Wireless mesh networks (WMNs). In this work different parameters are associated like edge cost, edge delay and edge congestion. The aim is to create a tree traversing which the set of target nodes are spanned, so as to make the cost and congestion to be minimum with a bounded delay over the path between every pair of source and destination. Since searching optimal routing satisfying multi constraints concurrently is an NP complete problem, we have presented a competent estimated algorithm certified with experimental results, which shows that the performance of presented algorithm is nearly optimum

    A Reliable Routing Algorithm for Delay Sensitive Data in Body Area Networks

    Get PDF
    Wireless body Area networks (WBANs) include a number of sensor nodes placed inside or on the human body to improve patient health and quality of life. Ensuring the transfer and receipt of data in sensitive data is a very important issue. Routing algorithms should support a variety of service quality such as reliability and delay in sending and receiving data. Loss of information or excessive data delay can lead to loss of human life. A proper routing algorithm in WBAN networks provides an efficient route with minimum delay and higher reliability for sensitive data. In this context, a routing algorithm, as it is proposed, categorizes patient data into sensitive and non-sensitive. Sensitive packets are transmitted to the destination through the shortest route to have less delay and non-sensitive packets are transmitted from other routes. Simulation shows that the proposed algorithm performs better, in terms of the throughput than the DMQoS and RL-QRP this superiority; as a result, decreases the latency of the end

    Stability of a class of dynamic routing protocols (IGRP)

    Get PDF
    An exact analysis of the dynamic behavior of IGRP, an adaptive shortest-path routing algorithm, is performed. The distance metric is a weighted sum of traffic-sensitive and traffic-insensitive delay components. The optimality and stability of the protocol is related to the ratio of the weights. In particular, it is shown that if the traffic-sensitive component is not given enough weight, then starting from any initial routing, the subsequent routings after finitely many update periods will oscillate between two worst cases. Otherwise, the successive routings will converge to the unique equilibrium routing. It is also shown that load sharing among routes whose distances are within a threshold of the minimum distance helps stabilize the dynamic behavior

    Optimal Caching and Routing in Hybrid Networks

    Full text link
    Hybrid networks consisting of MANET nodes and cellular infrastructure have been recently proposed to improve the performance of military networks. Prior work has demonstrated the benefits of in-network content caching in a wired, Internet context. We investigate the problem of developing optimal routing and caching policies in a hybrid network supporting in-network caching with the goal of minimizing overall content-access delay. Here, needed content may always be accessed at a back-end server via the cellular infrastructure; alternatively, content may also be accessed via cache-equipped "cluster" nodes within the MANET. To access content, MANET nodes must thus decide whether to route to in-MANET cluster nodes or to back-end servers via the cellular infrastructure; the in-MANET cluster nodes must additionally decide which content to cache. We model the cellular path as either i) a congestion-insensitive fixed-delay path or ii) a congestion-sensitive path modeled as an M/M/1 queue. We demonstrate that under the assumption of stationary, independent requests, it is optimal to adopt static caching (i.e., to keep a cache's content fixed over time) based on content popularity. We also show that it is optimal to route to in-MANET caches for content cached there, but to route requests for remaining content via the cellular infrastructure for the congestion-insensitive case and to split traffic between the in-MANET caches and cellular infrastructure for the congestion-sensitive case. We develop a simple distributed algorithm for the joint routing/caching problem and demonstrate its efficacy via simulation.Comment: submitted to Milcom 201

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme
    • 

    corecore