35 research outputs found

    Fast-Convergent Learning-aided Control in Energy Harvesting Networks

    Full text link
    In this paper, we present a novel learning-aided energy management scheme (LEM\mathtt{LEM}) for multihop energy harvesting networks. Different from prior works on this problem, our algorithm explicitly incorporates information learning into system control via a step called \emph{perturbed dual learning}. LEM\mathtt{LEM} does not require any statistical information of the system dynamics for implementation, and efficiently resolves the challenging energy outage problem. We show that LEM\mathtt{LEM} achieves the near-optimal [O(ϵ),O(log(1/ϵ)2)][O(\epsilon), O(\log(1/\epsilon)^2)] utility-delay tradeoff with an O(1/ϵ1c/2)O(1/\epsilon^{1-c/2}) energy buffers (c(0,1)c\in(0,1)). More interestingly, LEM\mathtt{LEM} possesses a \emph{convergence time} of O(1/ϵ1c/2+1/ϵc)O(1/\epsilon^{1-c/2} +1/\epsilon^c), which is much faster than the Θ(1/ϵ)\Theta(1/\epsilon) time of pure queue-based techniques or the Θ(1/ϵ2)\Theta(1/\epsilon^2) time of approaches that rely purely on learning the system statistics. This fast convergence property makes LEM\mathtt{LEM} more adaptive and efficient in resource allocation in dynamic environments. The design and analysis of LEM\mathtt{LEM} demonstrate how system control algorithms can be augmented by learning and what the benefits are. The methodology and algorithm can also be applied to similar problems, e.g., processing networks, where nodes require nonzero amount of contents to support their actions

    When Backpressure Meets Predictive Scheduling

    Full text link
    Motivated by the increasing popularity of learning and predicting human user behavior in communication and computing systems, in this paper, we investigate the fundamental benefit of predictive scheduling, i.e., predicting and pre-serving arrivals, in controlled queueing systems. Based on a lookahead window prediction model, we first establish a novel equivalence between the predictive queueing system with a \emph{fully-efficient} scheduling scheme and an equivalent queueing system without prediction. This connection allows us to analytically demonstrate that predictive scheduling necessarily improves system delay performance and can drive it to zero with increasing prediction power. We then propose the \textsf{Predictive Backpressure (PBP)} algorithm for achieving optimal utility performance in such predictive systems. \textsf{PBP} efficiently incorporates prediction into stochastic system control and avoids the great complication due to the exponential state space growth in the prediction window size. We show that \textsf{PBP} can achieve a utility performance that is within O(ϵ)O(\epsilon) of the optimal, for any ϵ>0\epsilon>0, while guaranteeing that the system delay distribution is a \emph{shifted-to-the-left} version of that under the original Backpressure algorithm. Hence, the average packet delay under \textsf{PBP} is strictly better than that under Backpressure, and vanishes with increasing prediction window size. This implies that the resulting utility-delay tradeoff with predictive scheduling beats the known optimal [O(ϵ),O(log(1/ϵ))][O(\epsilon), O(\log(1/\epsilon))] tradeoff for systems without prediction

    The Value-of-Information in Matching with Queues

    Full text link
    We consider the problem of \emph{optimal matching with queues} in dynamic systems and investigate the value-of-information. In such systems, the operators match tasks and resources stored in queues, with the objective of maximizing the system utility of the matching reward profile, minus the average matching cost. This problem appears in many practical systems and the main challenges are the no-underflow constraints, and the lack of matching-reward information and system dynamics statistics. We develop two online matching algorithms: Learning-aided Reward optimAl Matching (LRAM\mathtt{LRAM}) and Dual-LRAM\mathtt{LRAM} (DRAM\mathtt{DRAM}) to effectively resolve both challenges. Both algorithms are equipped with a learning module for estimating the matching-reward information, while DRAM\mathtt{DRAM} incorporates an additional module for learning the system dynamics. We show that both algorithms achieve an O(ϵ+δr)O(\epsilon+\delta_r) close-to-optimal utility performance for any ϵ>0\epsilon>0, while DRAM\mathtt{DRAM} achieves a faster convergence speed and a better delay compared to LRAM\mathtt{LRAM}, i.e., O(δz/ϵ+log(1/ϵ)2))O(\delta_{z}/\epsilon + \log(1/\epsilon)^2)) delay and O(δz/ϵ)O(\delta_z/\epsilon) convergence under DRAM\mathtt{DRAM} compared to O(1/ϵ)O(1/\epsilon) delay and convergence under LRAM\mathtt{LRAM} (δr\delta_r and δz\delta_z are maximum estimation errors for reward and system dynamics). Our results reveal that information of different system components can play very different roles in algorithm performance and provide a systematic way for designing joint learning-control algorithms for dynamic systems
    corecore