1,749 research outputs found

    To Stay Or To Switch: Multiuser Dynamic Channel Access

    Full text link
    In this paper we study opportunistic spectrum access (OSA) policies in a multiuser multichannel random access cognitive radio network, where users perform channel probing and switching in order to obtain better channel condition or higher instantaneous transmission quality. However, unlikely many prior works in this area, including those on channel probing and switching policies for a single user to exploit spectral diversity, and on probing and access policies for multiple users over a single channel to exploit temporal and multiuser diversity, in this study we consider the collective switching of multiple users over multiple channels. In addition, we consider finite arrivals, i.e., users are not assumed to always have data to send and demand for channel follow a certain arrival process. Under such a scenario, the users' ability to opportunistically exploit temporal diversity (the temporal variation in channel quality over a single channel) and spectral diversity (quality variation across multiple channels at a given time) is greatly affected by the level of congestion in the system. We investigate the optimal decision process in this case, and evaluate the extent to which congestion affects potential gains from opportunistic dynamic channel switching

    An Online Approach to Dynamic Channel Access and Transmission Scheduling

    Full text link
    Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201

    When Channel Bonding is Beneficial for Opportunistic Spectrum Access Networks

    Full text link
    Transmission over multiple frequency bands combined into one logical channel speeds up data transfer for wireless networks. On the other hand, the allocation of multiple channels to a single user decreases the probability of finding a free logical channel for new connections, which may result in a network-wide throughput loss. While this relationship has been studied experimentally, especially in the WLAN configuration, little is known on how to analytically model such phenomena. With the advent of Opportunistic Spectrum Access (OSA) networks, it is even more important to understand the circumstances in which it is beneficial to bond channels occupied by primary users with dynamic duty cycle patterns. In this paper we propose an analytical framework which allows the investigation of the average channel throughput at the medium access control layer for OSA networks with channel bonding enabled. We show that channel bonding is generally beneficial, though the extent of the benefits depend on the features of the OSA network, including OSA network size and the total number of channels available for bonding. In addition, we show that performance benefits can be realized by adaptively changing the number of bonded channels depending on network conditions. Finally, we evaluate channel bonding considering physical layer constraints, i.e. throughput reduction compared to the theoretical throughput of a single virtual channel due to a transmission power limit for any bonding size.Comment: accepted to IEEE Transactions on Wireless Communication

    Cooperation and Underlay Mode Selection in Cognitive Radio Network

    Full text link
    In this research, we proposes a new method for cooperation and underlay mode selection in cognitive radio networks. We characterize the maximum achievable throughput of our proposed method of hybrid spectrum sharing. Hybrid spectrum sharing is assumed where the Secondary User (SU) can access the Primary User (PU) channel in two modes, underlay mode or cooperative mode with admission control. In addition to access the channel in the overlay mode, secondary user is allowed to occupy the channel currently occupied by the primary user but with small transmission power. Adding the underlay access modes attains more opportunities to the secondary user to transmit data. It is proposed that the secondary user can only exploits the underlay access when the channel of the primary user direct link is good or predicted to be in non-outage state. Therefore, the secondary user could switch between underlay spectrum sharing and cooperation with the primary user. Hybrid access is regulated through monitoring the state of the primary link. By observing the simulation results, the proposed model attains noticeable improvement in the system performance in terms of maximum secondary user throughput than the conventional cooperation and non-cooperation schemes
    • …
    corecore