10,626 research outputs found

    A Cross-layer Perspective on Energy Harvesting Aided Green Communications over Fading Channels

    Full text link
    We consider the power allocation of the physical layer and the buffer delay of the upper application layer in energy harvesting green networks. The total power required for reliable transmission includes the transmission power and the circuit power. The harvested power (which is stored in a battery) and the grid power constitute the power resource. The uncertainty of data generated from the upper layer, the intermittence of the harvested energy, and the variation of the fading channel are taken into account and described as independent Markov processes. In each transmission, the transmitter decides the transmission rate as well as the allocated power from the battery, and the rest of the required power will be supplied by the power grid. The objective is to find an allocation sequence of transmission rate and battery power to minimize the long-term average buffer delay under the average grid power constraint. A stochastic optimization problem is formulated accordingly to find such transmission rate and battery power sequence. Furthermore, the optimization problem is reformulated as a constrained MDP problem whose policy is a two-dimensional vector with the transmission rate and the power allocation of the battery as its elements. We prove that the optimal policy of the constrained MDP can be obtained by solving the unconstrained MDP. Then we focus on the analysis of the unconstrained average-cost MDP. The structural properties of the average optimal policy are derived. Moreover, we discuss the relations between elements of the two-dimensional policy. Next, based on the theoretical analysis, the algorithm to find the constrained optimal policy is presented for the finite state space scenario. In addition, heuristic policies with low-complexity are given for the general state space. Finally, simulations are performed under these policies to demonstrate the effectiveness

    Effective Capacity in Broadcast Channels with Arbitrary Inputs

    Full text link
    We consider a broadcast scenario where one transmitter communicates with two receivers under quality-of-service constraints. The transmitter initially employs superposition coding strategies with arbitrarily distributed signals and sends data to both receivers. Regarding the channel state conditions, the receivers perform successive interference cancellation to decode their own data. We express the effective capacity region that provides the maximum allowable sustainable data arrival rate region at the transmitter buffer or buffers. Given an average transmission power limit, we provide a two-step approach to obtain the optimal power allocation policies that maximize the effective capacity region. Then, we characterize the optimal decoding regions at the receivers in the space spanned by the channel fading power values. We finally substantiate our results with numerical presentations.Comment: This paper will appear in 14th International Conference on Wired&Wireless Internet Communications (WWIC

    Optimal Compression and Transmission Rate Control for Node-Lifetime Maximization

    Get PDF
    We consider a system that is composed of an energy constrained sensor node and a sink node, and devise optimal data compression and transmission policies with an objective to prolong the lifetime of the sensor node. While applying compression before transmission reduces the energy consumption of transmitting the sensed data, blindly applying too much compression may even exceed the cost of transmitting raw data, thereby losing its purpose. Hence, it is important to investigate the trade-off between data compression and transmission energy costs. In this paper, we study the joint optimal compression-transmission design in three scenarios which differ in terms of the available channel information at the sensor node, and cover a wide range of practical situations. We formulate and solve joint optimization problems aiming to maximize the lifetime of the sensor node whilst satisfying specific delay and bit error rate (BER) constraints. Our results show that a jointly optimized compression-transmission policy achieves significantly longer lifetime (90% to 2000%) as compared to optimizing transmission only without compression. Importantly, this performance advantage is most profound when the delay constraint is stringent, which demonstrates its suitability for low latency communication in future wireless networks.Comment: accepted for publication in IEEE Transactions on Wireless Communicaiton
    • …
    corecore