2,532 research outputs found

    Iterative source and channel decoding relying on correlation modelling for wireless video transmission

    No full text
    Since joint source-channel decoding (JSCD) is capable of exploiting the residual redundancy in the source signals for improving the attainable error resilience, it has attracted substantial attention. Motivated by the principle of exploiting the source redundancy at the receiver, in this treatise we study the application of iterative source channel decoding (ISCD) aided video communications, where the video signal is modelled by a first-order Markov process. Firstly, we derive reduced-complexity formulas for the first-order Markov modelling (FOMM) aided source decoding. Then we propose a bit-based iterative horizontal vertical scanline model (IHVSM) aided source decoding algorithm, where a horizontal and a vertical source decoder are employed for exchanging their extrinsic information using the iterative decoding philosophy. The iterative IHVSM aided decoder is then employed in a forward error correction (FEC) encoded uncompressed video transmission scenario, where the IHVSM and the FEC decoder exchange softbit-information for performing turbo-like ISCD for the sake of improving the reconstructed video quality. Finally, we benchmark the attainable system performance against a near-lossless H.264/AVC video communication system and the existing FOMM based softbit source decoding scheme, where The financial support of the RC-UK under the auspices of the India-UK Advanced Technology Centre (IU-ATC) and that of the EU under the CONCERTO project as well as that of the European Research Council’s Advanced Fellow Grant is gratefully acknowledged. The softbit decoding is performed by a one-dimensional Markov model aided decoder. Our simulation results show that Eb=N0 improvements in excess of 2.8 dB are attainable by the proposed technique in uncompressed video applications

    Source Coding with Fixed Lag Side Information

    Full text link
    We consider source coding with fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback) introduced by Pradhan. We use this duality to develop a linear complexity algorithm which achieves the rate-distortion bound for any memoryless finite alphabet source and distortion measure.Comment: 10 pages, 3 figure

    Universal lossless source coding with the Burrows Wheeler transform

    Get PDF
    The Burrows Wheeler transform (1994) is a reversible sequence transformation used in a variety of practical lossless source-coding algorithms. In each, the BWT is followed by a lossless source code that attempts to exploit the natural ordering of the BWT coefficients. BWT-based compression schemes are widely touted as low-complexity algorithms giving lossless coding rates better than those of the Ziv-Lempel codes (commonly known as LZ'77 and LZ'78) and almost as good as those achieved by prediction by partial matching (PPM) algorithms. To date, the coding performance claims have been made primarily on the basis of experimental results. This work gives a theoretical evaluation of BWT-based coding. The main results of this theoretical evaluation include: (1) statistical characterizations of the BWT output on both finite strings and sequences of length n → ∞, (2) a variety of very simple new techniques for BWT-based lossless source coding, and (3) proofs of the universality and bounds on the rates of convergence of both new and existing BWT-based codes for finite-memory and stationary ergodic sources. The end result is a theoretical justification and validation of the experimentally derived conclusions: BWT-based lossless source codes achieve universal lossless coding performance that converges to the optimal coding performance more quickly than the rate of convergence observed in Ziv-Lempel style codes and, for some BWT-based codes, within a constant factor of the optimal rate of convergence for finite-memory source

    Universal Coding on Infinite Alphabets: Exponentially Decreasing Envelopes

    Full text link
    This paper deals with the problem of universal lossless coding on a countable infinite alphabet. It focuses on some classes of sources defined by an envelope condition on the marginal distribution, namely exponentially decreasing envelope classes with exponent α\alpha. The minimax redundancy of exponentially decreasing envelope classes is proved to be equivalent to 14αlog⁥elog⁥2n\frac{1}{4 \alpha \log e} \log^2 n. Then a coding strategy is proposed, with a Bayes redundancy equivalent to the maximin redundancy. At last, an adaptive algorithm is provided, whose redundancy is equivalent to the minimax redundanc

    Variable-to-Fixed Length Homophonic Coding Suitable for Asymmetric Channel Coding

    Full text link
    In communication through asymmetric channels the capacity-achieving input distribution is not uniform in general. Homophonic coding is a framework to invertibly convert a (usually uniform) message into a sequence with some target distribution, and is a promising candidate to generate codewords with the nonuniform target distribution for asymmetric channels. In particular, a Variable-to-Fixed length (VF) homophonic code can be used as a suitable component for channel codes to avoid decoding error propagation. However, the existing VF homophonic code requires the knowledge of the maximum relative gap of probabilities between two adjacent sequences beforehand, which is an unrealistic assumption for long block codes. In this paper we propose a new VF homophonic code without such a requirement by allowing one-symbol decoding delay. We evaluate this code theoretically and experimentally to verify its asymptotic optimality.Comment: Full version of the paper to appear in 2017 IEEE International Symposium on Information Theory (ISIT2017

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs
    • 

    corecore