1,481 research outputs found

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Edge Offloading in Smart Grid

    Full text link
    The energy transition supports the shift towards more sustainable energy alternatives, paving towards decentralized smart grids, where the energy is generated closer to the point of use. The decentralized smart grids foresee novel data-driven low latency applications for improving resilience and responsiveness, such as peer-to-peer energy trading, microgrid control, fault detection, or demand response. However, the traditional cloud-based smart grid architectures are unable to meet the requirements of the new emerging applications such as low latency and high-reliability thus alternative architectures such as edge, fog, or hybrid need to be adopted. Moreover, edge offloading can play a pivotal role for the next-generation smart grid AI applications because it enables the efficient utilization of computing resources and addresses the challenges of increasing data generated by IoT devices, optimizing the response time, energy consumption, and network performance. However, a comprehensive overview of the current state of research is needed to support sound decisions regarding energy-related applications offloading from cloud to fog or edge, focusing on smart grid open challenges and potential impacts. In this paper, we delve into smart grid and computational distribution architec-tures, including edge-fog-cloud models, orchestration architecture, and serverless computing, and analyze the decision-making variables and optimization algorithms to assess the efficiency of edge offloading. Finally, the work contributes to a comprehensive understanding of the edge offloading in smart grid, providing a SWOT analysis to support decision making.Comment: to be submitted to journa
    • …
    corecore