311 research outputs found

    Reconfigurable Intelligent Surface Assisted MEC Offloading in NOMA-Enabled IoT Networks

    Get PDF
    Integrating mobile edge computing (MEC) into the Internet of Things (IoT) enables resource-limited mobile terminals to offload part or all of the computation-intensive applications to nearby edge servers. On the other hand, by introducing reconfigurable intelligent surface (RIS), it can enhance the offloading capability of MEC, such that enabling low latency and high throughput. To enhance the task offloading, we investigate the MEC non-orthogonal multiple access (MEC-NOMA) network framework for mobile edge computation offloading with the assistance of a RIS. Different from conventional communication systems, we aim at allowing multiple IoT devices to share the same channel in tasks offloading process. Specifically, the joint consideration of channel assignments, beamwidth allocation, offloading rate and power control is formulated as a multi-objective optimization problem (MOP), which includes minimizing the offloading delay of computing-oriented IoT devices (CP-IDs) and maximizing the transmission rate of communication-oriented IoT devices (CM-IDs). Since the resulting problem is non-convex, we employ ϵ-constraint approach to transform the MOP into the single-objective optimization problems (SOP), and then the RIS-assisted channel assignment algorithm is developed to tackle the fractional objective function. Simulation results corroborate the benefits of our strategy, which can outperforms the other benchmark schemes

    A Max-Min Task Offloading Algorithm for Mobile Edge Computing Using Non-Orthogonal Multiple Access

    Full text link
    To mitigate computational power gap between the network core and edges, mobile edge computing (MEC) is poised to play a fundamental role in future generations of wireless networks. In this letter, we consider a non-orthogonal multiple access (NOMA) transmission model to maximize the worst task to be offloaded among all users to the network edge server. A provably convergent and efficient algorithm is developed to solve the considered non-convex optimization problem for maximizing the minimum number of offloaded bits in a multi-user NOMAMEC system. Compared to the approach of optimized orthogonal multiple access (OMA), for given MEC delay, power and energy limits, the NOMA-based system considerably outperforms its OMA-based counterpart in MEC settings. Numerical results demonstrate that the proposed algorithm for NOMA-based MEC is particularly useful for delay sensitive applications.Comment: 5 pages, 5 figure

    Delay Minimization for NOMA-MEC Offloading

    Full text link
    This paper considers the minimization of the offloading delay for non-orthogonal multiple access assisted mobile edge computing (NOMA-MEC). By transforming the delay minimization problem into a form of fractional programming, two iterative algorithms based on Dinkelbach's method and Newton's method are proposed. The optimality of both methods is proved and their convergence is compared. Furthermore, criteria for choosing between three possible modes, namely orthogonal multiple access (OMA), pure NOMA, and hybrid NOMA, for MEC offloading are established

    Completion-Time-Driven Scheduling for Uplink NOMA-Enabled Wireless Networks

    Get PDF
    Efficient scheduling policy is crucial in wireless networks due to delay-sensitivity of many emerging applications. In this work, we consider a joint user pairing and scheduling (UPaS) scheme for multi-carrier non-orthogonal multiple access (MC-NOMA)-enabled wireless networks to reduce the maximum completion time of serving uplink users. The NOMA scheduling problem is shown to be NP-hard and a shortest processing time (SPT)-based strategy to solve the same problem within affordable time and complexity is introduced. The simulation results confirm the efficacy of the proposed scheduling scheme in terms of the maximum completion time in comparison with orthogonal multiple access (OMA) and random NOMA pairing

    Energy-Latency Aware Intelligent Reflecting Surface Aided Multi-cell Mobile Edge Computing

    Full text link
    The explosive development of the Internet of Things (IoT) has led to increased interest in mobile edge computing (MEC), which provides computational resources at network edges to accommodate computation-intensive and latency-sensitive applications. Intelligent reflecting surfaces (IRSs) have gained attention as a solution to overcome blockage problems during the offloading uplink transmission in MEC systems. This paper explores IRS-aided multi-cell networks that enable servers to serve neighboring cells and cooperate to handle resource exhaustion. We aim to minimize the joint energy and latency cost, by jointly optimizing computation tasks, edge computing resources, user beamforming, and IRS phase shifts. The problem is decomposed into two subproblems--the MEC subproblem and the IRS communication subproblem--using the block coordinate descent (BCD) technique. The MEC subproblem is reformulated as a nonconvex quadratic constrained problem (QCP), while the IRS communication subproblem is transformed into a weight-sum-rate problem with auxiliary variables. We propose an efficient algorithm to iteratively optimize MEC resources and IRS communication until convergence. Numerical results show that our algorithm outperforms benchmarks and that multi-cell MEC systems achieve additional performance gains when supported by IRS.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore