9 research outputs found

    Efficient Load Balancing for Cloud Computing by Using Content Analysis

    Get PDF
    Nowadays, computer networks have grown rapidly due to the demand for information technology management and facilitation of greater functionality. The service provided based on a single machine cannot accommodate large databases. Therefore, single servers must be combined for server group services. The problem in grouping server service is that it is very hard to manage many devices which have different hardware. Cloud computing is an extensive scalable computing infrastructure that shares existing resources. It is a popular option for people and businesses for a number of reasons including cost savings and security. This paper aimed to propose an efficient technique of load balance control by using HA Proxy in cloud computing with the objective of receiving and distributing the workload to the computer server to share the processing resources. The proposed technique applied round-robin scheduling for an efficient resource management of the cloud storage systems that focused on an effective workload balancing and a dynamic replication strategy. The evaluation approach was based on the benchmark data from requests per second and failed requests. The results showed that the proposed technique could improve performance of load balancing by 1,000 request /6.31 sec in cloud computing and generate fewer false alarm

    User Scheduling for Precoded Satellite Systems with Individual Quality of Service Constraints

    Get PDF
    Multibeam high throughput satellite (MB-HTS) systems will play a key role in delivering broadband services to a large number of users with diverse Quality of Service (QoS) requirements. This paper focuses on MB-HTS where the same spectrum is re-used by all user links and, in particular, we propose a novel user scheduling design capable to provide guarantees in terms of individual QoS requirements while maximizing the system throughput. This is achieved by precoding to mitigate mutual interference. The combinatorial optimization structure requires an extremely high cost to obtain the global optimum even with a reduced number of users. We, therefore, propose a heuristic algorithm yielding a good local solution and tolerable computational complexity, applicable for large-scale networks. Numerical results demonstrate the effectiveness of our proposed algorithm on scheduling many users with better sum throughput than the other benchmarks. Besides, the QoS requirements for all scheduled users are guaranteed.Comment: 6 pages,2 figures, Accepted to present at PIMRC 202

    A Unified Framework for SINR Analysis in Poisson Networks with Traffic Dynamics

    Full text link
    We study the performance of wireless links for a class of Poisson networks, in which packets arrive at the transmitters following Bernoulli processes. By combining stochastic geometry with queueing theory, two fundamental measures are analyzed, namely the transmission success probability and the meta distribution of signal-to-interference-plus-noise ratio (SINR). Different from the conventional approaches that assume independent active states across the nodes and use homogeneous point processes to model the locations of interferers, our analysis accounts for the interdependency amongst active states of the transmitters in space and arrives at a non-homogeneous point process for the modeling of interferers' positions, which leads to a more accurate characterization of the SINR. The accuracy of the theoretical results is verified by simulations, and the developed framework is then used to devise design guidelines for the deployment strategies of wireless networks

    Optimizing Information Freshness in Wireless Networks: A Stochastic Geometry Approach

    Full text link
    Optimization of information freshness in wireless networks has usually been performed based on queueing analysis that captures only the temporal traffic dynamics associated with the transmitters and receivers. However, the effect of interference, which is mainly dominated by the interferers' geographic locations, is not well understood. In this paper, we leverage a spatiotemporal model, which allows one to characterize the age of information (AoI) from a joint queueing-geometry perspective, for the design of a decentralized scheduling policy that exploits local observation to make transmission decisions that minimize the AoI. To quantify the performance, we also derive accurate and tractable expressions for the peak AoI. Numerical results reveal that: i) the packet arrival rate directly affects the service process due to queueing interactions, ii) the proposed scheme can adapt to traffic variations and largely reduce the peak AoI, and iii) the proposed scheme scales well as the network grows in size. This is done by adaptively adjusting the radio access probability at each transmitter to the change of the ambient environment.Comment: arXiv admin note: substantial text overlap with arXiv:1907.0967

    Scheduling Policies for Federated Learning in Wireless Networks

    Full text link
    Motivated by the increasing computational capacity of wireless user equipments (UEs), e.g., smart phones, tablets, or vehicles, as well as the increasing concerns about sharing private data, a new machine learning model has emerged, namely federated learning (FL), that allows a decoupling of data acquisition and computation at the central unit. Unlike centralized learning taking place in a data center, FL usually operates in a wireless edge network where the communication medium is resource-constrained and unreliable. Due to limited bandwidth, only a portion of UEs can be scheduled for updates at each iteration. Due to the shared nature of the wireless medium, transmissions are subjected to interference and are not guaranteed. The performance of FL system in such a setting is not well understood. In this paper, an analytical model is developed to characterize the performance of FL in wireless networks. Particularly, tractable expressions are derived for the convergence rate of FL in a wireless setting, accounting for effects from both scheduling schemes and inter-cell interference. Using the developed analysis, the effectiveness of three different scheduling policies, i.e., random scheduling (RS), round robin (RR), and proportional fair (PF), are compared in terms of FL convergence rate. It is shown that running FL with PF outperforms RS and RR if the network is operating under a high signal-to-interference-plus-noise ratio (SINR) threshold, while RR is more preferable when the SINR threshold is low. Moreover, the FL convergence rate decreases rapidly as the SINR threshold increases, thus confirming the importance of compression and quantization of the update parameters. The analysis also reveals a trade-off between the number of scheduled UEs and subchannel bandwidth under a fixed amount of available spectrum

    Delay Analysis of Random Scheduling and Round Robin in Small Cell Networks

    No full text
    corecore