7 research outputs found

    A Multichannel MAC Protocol for IoT-enabled Cognitive Radio Ad Hoc Networks

    Get PDF
    Cognitive radios have the ability to dynamically sense and access the wireless spectrum, and this ability is a key factor in successfully building Internet-of-Things (IoT)-enabled mobile ad hoc networks. This paper proposes a contention-free token-based multichannel MAC protocol for IoT-enabled Cognitive Radio Ad Hoc Networks (CRAHNs). In this, secondary users of CRAHNs detect activity on the wireless spectrum and then access idle channels licensed by primary users. CRAHNs are divided into clusters, and the channel to use for transmission is determined dynamically from the probability of finding idle primary-user channels. The token-based MAC window size is adaptive, with adjustment according to actual traffic, which reduces both end-to-end MAC contention delay and energy consumption. High throughput and spatial reuse of channels can also be achieved using a dynamic control channel and dynamic schemes for contention windows. We performed extensive simulations to verify that the proposed method can achieve better performance in mobile CRAHNs than other MAC schemes can

    Priority queueing models for cognitive radio networks with traffic differentiation

    Get PDF
    In this paper, we present a new queueing model providing the accurate average system time for packets transmitted over a cognitive radio (CR) link for multiple traffic classes with the preemptive and non-preemptive priority service disciplines. The analysis considers general packet service time, general distributions for the channel availability periods and service interruption periods, and a service-resume transmission. We further introduce and analyze two novel priority service disciplines for opportunistic spectrum access (OSA) networks which take advantage of interruptions to preempt low priority traffic at a low cost. Analytical results, in addition to simulation results to validate their accuracy, are also provided and used to illustrate the impact of different OSA network parameters on the average system time. We particularly show that, for the same average CR transmission link availability, the packet system time significantly increases in a semi-static network with long operating and interruption periods compared to an OSA network with fast alternating operating and interruption periods. We also present results indicating that, due to the presence of interruptions, priority queueing service disciplines provide a greater differentiated service in OSA networks than in traditional networks. The analytical tools presented in this paper are general and can be used to analyze the traffic metrics of most OSA networks carrying multiple classes of traffic with priority queueing service differentiation

    Reliability and Quality of Service in Opportunistic Spectrum Access

    Get PDF
    RÉSUMÉ Les réseaux radio-cognitif constituent une des meilleures options technologiques pour les réseaux sans-fil futurs. Afin d’étudier comment la fiabilité devrait être redéfinie dans ces réseaux, nous étudions d'abord les sources les plus fréquentes de panne dans les réseaux sans-fil et fournissons une procédure systématique de classement des pannes. Il est ensuite expliqué comment les radios cognitives peuvent profiter de leur propre capacité à mettre en œuvre des mécanismes efficaces de prévention et de récupération contre les pannes et ainsi assurer des communications sans-fil fiables et de qualité de service constante. En considérant des normes arrivantes sur la base de l'OSA, ce qui distingue un réseau radio-cognitif de ses prédécesseurs est des changements fréquents de canal ainsi que de nouvelles exigences telles la détection de disponibilité et la décision d'utilisation du spectre. Nous nous concentrons sur cet aspect et modélisons la remise du spectre comme une panne. Par conséquent, améliorer la fiabilité est équivalent à augmenter le temps moyen entre pannes, à rendre plus efficace le processus de récupération et à réduire le temps moyen de réparation. Nous étudions donc d'abord l'impact du temps de récupération sur la performance du réseau radio-cognitif. En classifiant les pannes en dures et souples, il est examiné comment la disponibilité, le temps moyen entre pannes et le temps moyen jusqu'à la réparation sont touchés par le procès de récupération. Nous observons que le temps dépensé pour la récupération empêche le réseau d'atteindre le maximum de disponibilité. Par conséquent, pour obtenir un temps plus élevé entre pannes et un temps de réparation plus court, une option disponible est d'augmenter le nombre de canaux pouvant être utilisés par le réseau radio-cognitif, de sorte que, avec une haute probabilité, un utilisateur qui a raté le canal puisse trouver bientôt un nouveau canal. De l'autre côté, un mécanisme de récupération efficace est nécessaire pour mieux profiter de ce grand nombre de canaux; l'amélioration de la récupération est donc indispensable. Pour étudier l'impact de la récupération sur les couches plus hautes (e.g., la couche liaison et réseau), l’approche de l’analyse de file d'attente est choisie. Compte tenu des périodes de récupération comme une interruption de service, un modèle général de file d'attente de M/G/1 avec des interruptions est proposé. Différents paramètres de fiabilité et de qualité de service peuvent être trouvés à partir de ce modèle de file d'attente pour étudier comment la spécification des canaux, tels la distribution des périodes de disponibilité et d'indisponibilité, et la spécification de l'algorithme de récupération, tels la durée de récupération, affectent les paramètres de performance comme la perte de paquets, de retard et de gigue, et aussi le temps entre pannes. Pour soutenir la différenciation des classes de trafic, nous proposons une approche de file d'attente avec priorité. Nous proposons une extension des résultats du modèle de file d'attente générale et présentons quatre différentes disciplines de file d'attente de priorité, allant d'un régime préemptif absolu à un régime complètement non préemptif. Les nouvelles disciplines augmentent la flexibilité et la résolution de décision et permettent au noeud CR de contrôler l'interaction des différentes classes de trafic avec plus de précision.---------- ABSTRACT Cognitive-radio based wireless networks are a technology of choice for incoming wireless networks. To investigate how reliability should be redefined for these networks, we study the most common sources of failure in wireless networks and provide a systematic failure classification procedure. It is then explained how cognitive radios can use their inherent capabilities to implement efficient prevention and recovery mechanisms to combat failures and thereby provide more reliable communications and consistent quality of service in wireless networks. Considering incoming OSA-based standards, what distinguishes a cognitive radio network from its predecessors is the frequent spectrum handovers along with new requirements such as spectrum sensing and spectrum usage decision. We thus focus on this aspect and model the spectrum handover as a failure, so improving the reliability is equivalent to increasing the mean time to failure, improving the recovery process and shortening the mean time to repair. We first study the impact of the recovery time on the performance of the cognitive radio network. By classifying the failures into hard and soft, it is investigated how the availability, mean time to failure and mean time to repair are affected by the recovery time. It is observed that the time spent for recovery prevents the network from reaching the maximum availability. Therefore, to achieve a high mean time to hard failure and low mean time to repair, an available option is to increase the number of channels, so that with a high probability, a user who missed the channel can soon find a new channel. On the other side, an efficient recovery scheme is required to better take advantage of a large number of channels. Recovery improvement is thus indispensable. To study the impact of recovery on higher communication layers, a queueing approach is chosen. Considering the recovery periods as a service interruption, a general M/G/1 queueing model with interruption is proposed. Different reliability and quality of service parameters can be found from this queueing model to investigate how channel parameters, such as availability and unavailability periods, and the recovery algorithm specifications, such as the recovery duration, affect packet loss, delay and jitter, and also the MTTF and MTTR for hard and soft failures. To support traffic differentiation, we suggest a priority queueing approach. We extend the results of the general queueing model and discuss four different priority queueing disciplines ranging from a pure preemptive scheme to a pure non-preemptive scheme. New disciplines increase the flexibility and decision resolution and enable the CR node to more accurately control the interaction of different classes of traffic. The models are solved, so it can be analyzed how the reliability and quality of service parameters, such as delay and jitter, for a specific class of traffic are affected not only by the channel parameters, but also by the characteristics of other traffic classes. The M/G/1 queueing model with interruptions is a foundation for performance analysis and an answer to the need of having closed-form analytical relations. We then extend the queueing model to more realistic scenarios, first with heterogeneous channels (heterogeneous service rate for different channels) and second with multiple users and a random medium access model

    SURVEY ON DELAY ANALYSIS OF MULTICHANNEL OPPORTUNISTIC SPECTRUM ACCESS MAC PROTOCOLS

    No full text

    Reliable and secure low energy sensed spectrum communication for time critical cloud computing applications

    Get PDF
    Reliability and security of data transmission and access are of paramount importance to enhance the dependability of time critical remote monitoring systems (e.g. tele-monitoring patients, surveillance of smart grid components). Potential failures for data transmissions include wireless channel unavailability and delays due to the interruptions. Reliable data transmission demands seamless channel availability with minimum delays in spite of interruptions (e.g. fading, denial-of-service attacks). Secure data transmissions require sensed data to be transmitted over unreliable wireless channels with sucient security using suitable encryption techniques. The transmitted data are stored in secure cloud repositories. Potential failures for data access include unsuccessful user authentications due to mis-management of digital identities and insucient permissions to authorize situation specic data access requests. Reliable and secure data access requires robust user authentication and context-dependent authorization to fulll situation specic data utility needs in cloud repositories. The work herein seeks to enhance the dependability of time critical remote monitoring applications, by reducing these failure conditions which may degrade the reliability and security of data transmission or access. As a result of an extensive literature survey, in order to achieve the above said security and reliability, the following areas have been selected for further investigations. The enhancement of opportunistic transmissions in cognitive radio networks to provide greater channel availability as opposed to xed spectrum allocations in conventional wireless networks. Delay sensitive channel access methods to ensure seamless connectivity in spite of multiple interruptions in cognitive radio networks. Energy ecient encryption and route selection mechanisms to enhance both secure and reliable data transmissions. Trustworthy digital identity management in cloud platforms which can facilitate ecient user authentication to ensure reliable access to the sensed remote monitoring data. Context-aware authorizations to reliably handle the exible situation specic data access requests. Main contributions of this thesis include a novel trust metric to select non-malicious cooperative spectrum sensing users to reliably detect vacant channels, a reliable delaysensitive cognitive radio spectrum hand-o management method for seamless connectivity and an energy-aware physical unclonable function based encryption key size selection method for secure data transmission. Furthermore, a trust based identity provider selection method for user authentications and a reliable context-aware situation specic authorization method are developed for more reliable and secure date access in cloud repositories. In conclusion, these contributions can holistically contribute to mitigate the above mentioned failure conditions to achieve the intended dependability of the timecritical remote monitoring applications
    corecore