2,737 research outputs found

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Bi-Directional Mission Offloading for Agile Space-Air-Ground Integrated Networks

    Full text link
    Space-air-ground integrated networks (SAGIN) provide great strengths in extending the capability of ground wireless networks. On the other hand, with rich spectrum and computing resources, the ground networks can also assist space-air networks to accomplish resource-intensive or power-hungry missions, enhancing the capability and sustainability of the space-air networks. Therefore, bi-directional mission offloading can make full use of the advantages of SAGIN and benefits both space-air and ground networks. In this article, we identify the key role of network reconfiguration in coordinating heterogeneous resources in SAGIN, and study how network function virtualization (NFV) and service function chaining (SFC) enable agile mission offloading. A case study validates the performance gain brought by bi-directional mission offloading. Future research issues are outlooked as the bi-directional mission offloading framework opens a new trail in releasing the full potentials of SAGIN.Comment: accepted by IEEE Wireless Communications Magazin

    Non-cooperative game approach for task offloading in edge clouds

    Full text link
    Task offloading provides a promising way to enhance the capability of the mobile terminal (also called terminal user) that is distributed on network edge and communicates edge clouds with wireless. Generally, there are multiple edge cloud nodes with distinct processing capability in a geographic area, which can offer computing service for various terminal users. Furthermore, the terminal users are competitive and selfish, i.e., each user takes into account only maximizing her own profit, while conducting task offloading strategies. In this paper, we focus on the resource management optimization for edge clouds, and formulate the problem of resource competition among terminal users as a non-cooperative game, in which the terminal user who acts as the player always pursues the minimization of the expected response time for her tasks by optimizing allocation strategies. We present the utility function of the user with queuing theory, and then prove the existence of Nash equilibrium for the formulated game. Using the concept of Nash bargaining solution to calculate the optimal task offloading scheme for the user, we propose a distributed task offloading algorithm with low computation complexity. The results of simulated experiments demonstrate that our method can quickly reach the Nash equilibrium point, and deliver satisfying performance at the expected response time of the user's tasks.Comment: 12 pages,11 figure

    Heterogeneous Services Provisioning in Small Cell Networks with Cache and Mobile Edge Computing

    Full text link
    In the area of full duplex (FD)-enabled small cell networks, limited works have been done on consideration of cache and mobile edge communication (MEC). In this paper, a virtual FD-enabled small cell network with cache and MEC is investigated for two heterogeneous services, high-data-rate service and computation-sensitive service. In our proposed scheme, content caching and FD communication are closely combined to offer high-data-rate services without the cost of backhaul resource. Computing offloading is conducted to guarantee the delay requirement of users. Then we formulate a virtual resource allocation problem, in which user association, power control, caching and computing offloading policies and resource allocation are jointly considered. Since the original problem is a mixed combinatorial problem, necessary variables relaxation and reformulation are conducted to transfer the original problem to a convex problem. Furthermore, alternating direction method of multipliers (ADMM) algorithm is adopted to obtain the optimal solution. Finally, extensive simulations are conducted with different system configurations to verify the effectiveness of the proposed scheme

    Vehicular Edge Computing via Deep Reinforcement Learning

    Full text link
    The smart vehicles construct Vehicle of Internet which can execute various intelligent services. Although the computation capability of the vehicle is limited, multi-type of edge computing nodes provide heterogeneous resources for vehicular services.When offloading the complicated service to the vehicular edge computing node, the decision should consider numerous factors.The offloading decision work mostly formulate the decision to a resource scheduling problem with single or multiple objective function and some constraints, and explore customized heuristics algorithms. However, offloading multiple data dependency tasks in a service is a difficult decision, as an optimal solution must understand the resource requirement, the access network, the user mobility, and importantly the data dependency. Inspired by recent advances in machine learning, we propose a knowledge driven (KD) service offloading decision framework for Vehicle of Internet, which provides the optimal policy directly from the environment. We formulate the offloading decision of multi-task in a service as a long-term planning problem, and explores the recent deep reinforcement learning to obtain the optimal solution. It considers the future data dependency of the following tasks when making decision for a current task from the learned offloading knowledge. Moreover, the framework supports the pre-training at the powerful edge computing node and continually online learning when the vehicular service is executed, so that it can adapt the environment changes and learns policy that are sensible in hindsight. The simulation results show that KD service offloading decision converges quickly, adapts to different conditions, and outperforms the greedy offloading decision algorithm.Comment: Preliminary report of ongoing wor

    An Incentive-Aware Job Offloading Control Framework for Mobile Edge Computing

    Full text link
    This paper considers a scenario in which an access point (AP) is equipped with a mobile edge server of finite computing power, and serves multiple resource-hungry mobile users by charging users a price. Pricing provides users with incentives in offloading. However, existing works on pricing are based on abstract concave utility functions (e.g, the logarithm function), giving no dependence on physical layer parameters. To that end, we first introduce a novel utility function, which measures the cost reduction by offloading as compared with executing jobs locally. Based on this utility function we then formulate two offloading games, with one maximizing individual's interest and the other maximizing the overall system's interest. We analyze the structural property of the games and admit in closed form the Nash Equilibrium and the Social Equilibrium, respectively. The proposed expressions are functions of the user parameters such as the weights of computational time and energy, the distance from the AP, thus constituting an advancement over prior economic works that have considered only abstract functions. Finally, we propose an optimal pricing-based scheme, with which we prove that the interactive decision-making process with self-interested users converges to a Nash Equilibrium point equal to the Social Equilibrium point.Comment: 13 pages, 9 figure

    A Parallel Optimal Task Allocation Mechanism for Large-Scale Mobile Edge Computing

    Full text link
    We consider the problem of intelligent and efficient task allocation mechanism in large-scale mobile edge computing (MEC), which can reduce delay and energy consumption in a parallel and distributed optimization. In this paper, we study the joint optimization model to consider cooperative task management mechanism among mobile terminals (MT), macro cell base station (MBS), and multiple small cell base station (SBS) for large-scale MEC applications. We propose a parallel multi-block Alternating Direction Method of Multipliers (ADMM) based method to model both requirements of low delay and low energy consumption in the MEC system which formulates the task allocation under those requirements as a nonlinear 0-1 integer programming problem. To solve the optimization problem, we develop an efficient combination of conjugate gradient, Newton and linear search techniques based algorithm with Logarithmic Smoothing (for global variables updating) and the Cyclic Block coordinate Gradient Projection (CBGP, for local variables updating) methods, which can guarantee convergence and reduce computational complexity with a good scalability. Numerical results demonstrate the effectiveness of the proposed mechanism and it can effectively reduce delay and energy consumption for a large-scale MEC system.Comment: 15 pages,4 figures, resource management for large-scale MEC. arXiv admin note: text overlap with arXiv:2003.1284

    Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

    Full text link
    Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering a MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies

    Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence

    Full text link
    Along with the rapid developments in communication technologies and the surge in the use of mobile devices, a brand-new computation paradigm, Edge Computing, is surging in popularity. Meanwhile, Artificial Intelligence (AI) applications are thriving with the breakthroughs in deep learning and the many improvements in hardware architectures. Billions of data bytes, generated at the network edge, put massive demands on data processing and structural optimization. Thus, there exists a strong demand to integrate Edge Computing and AI, which gives birth to Edge Intelligence. In this paper, we divide Edge Intelligence into AI for edge (Intelligence-enabled Edge Computing) and AI on edge (Artificial Intelligence on Edge). The former focuses on providing more optimal solutions to key problems in Edge Computing with the help of popular and effective AI technologies while the latter studies how to carry out the entire process of building AI models, i.e., model training and inference, on the edge. This paper provides insights into this new inter-disciplinary field from a broader perspective. It discusses the core concepts and the research road-map, which should provide the necessary background for potential future research initiatives in Edge Intelligence.Comment: 13 pages, 3 figure

    Extracting and Exploiting Inherent Sparsity for Efficient IoT Support in 5G: Challenges and Potential Solutions

    Full text link
    Besides enabling an enhanced mobile broadband, next generation of mobile networks (5G) are envisioned for the support of massive connectivity of heterogeneous Internet of Things (IoT)s. These IoTs are envisioned for a large number of use-cases including smart cities, environment monitoring, smart vehicles, etc. Unfortunately, most IoTs have very limited computing and storage capabilities and need cloud services. Hence, connecting these devices through 5G systems requires huge spectrum resources in addition to handling the massive connectivity and improved security. This article discusses the challenges facing the support of IoTs through 5G systems. The focus is devoted to discussing physical layer limitations in terms of spectrum resources and radio access channel connectivity. We show how sparsity can be exploited for addressing these challenges especially in terms of enabling wideband spectrum management and handling the connectivity by exploiting device-to-device communications and edge-cloud. Moreover, we identify major open problems and research directions that need to be explored towards enabling the support of massive heterogeneous IoTs through 5G systems.Comment: Accepted for publication in IEEE Wireless Communications Magazin
    corecore