489 research outputs found

    Exploring the deep structure of images

    Get PDF

    AFFECT-PRESERVING VISUAL PRIVACY PROTECTION

    Get PDF
    The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this dissertation, we propose to balance the privacy protection and the utility of the data by preserving the privacy-insensitive information, such as pose and expression, which is useful in many applications involving visual understanding. The Intellectual Merits of the dissertation include a novel framework for visual privacy protection by manipulating facial image and body shape of individuals, which: (1) is able to conceal the identity of individuals; (2) provide a way to preserve the utility of the data, such as expression and pose information; (3) balance the utility of the data and capacity of the privacy protection. The Broader Impacts of the dissertation focus on the significance of privacy protection on visual data, and the inadequacy of current privacy enhancing technologies in preserving affect and behavioral attributes of the visual content, which are highly useful for behavior observation in educational and medical settings. This work in this dissertation represents one of the first attempts in achieving both goals simultaneously

    Geometric Unified Method in 3D Object Classification

    Get PDF
    3D object classification is one of the most popular topics in the field of computer vision and computational geometry. Currently, the most popular state-of-the-art algorithm is the so-called Convolutional Neural Network (CNN) models with various representations that capture different features of the given 3D data, including voxels, local features, multi-view 2D features, and so on. With CNN as a holistic approach, researches focus on improving the accuracy and efficiency by designing the neural network architecture. This thesis aims to examine the existing work on 3D object classification and explore the underlying theory by integrating geometric approaches. By using geometric algorithms to pre-process and select data points, we dive into an existing architecture of directly feeding points into a deep CNN, and explore how geometry measures how important different points are in a CNN model. Moreover, we attempt to extract useful geometric features directly from the object data to introduce the feature matrix representation, which can be classified with distance-based approaches. We present all results of experiments and analyzed for future improvement

    Development of a text reading system on video images

    Get PDF
    Since the early days of computer science researchers sought to devise a machine which could automatically read text to help people with visual impairments. The problem of extracting and recognising text on document images has been largely resolved, but reading text from images of natural scenes remains a challenge. Scene text can present uneven lighting, complex backgrounds or perspective and lens distortion; it usually appears as short sentences or isolated words and shows a very diverse set of typefaces. However, video sequences of natural scenes provide a temporal redundancy that can be exploited to compensate for some of these deficiencies. Here we present a complete end-to-end, real-time scene text reading system on video images based on perspective aware text tracking. The main contribution of this work is a system that automatically detects, recognises and tracks text in videos of natural scenes in real-time. The focus of our method is on large text found in outdoor environments, such as shop signs, street names and billboards. We introduce novel efficient techniques for text detection, text aggregation and text perspective estimation. Furthermore, we propose using a set of Unscented Kalman Filters (UKF) to maintain each text region¿s identity and to continuously track the homography transformation of the text into a fronto-parallel view, thereby being resilient to erratic camera motion and wide baseline changes in orientation. The orientation of each text line is estimated using a method that relies on the geometry of the characters themselves to estimate a rectifying homography. This is done irrespective of the view of the text over a large range of orientations. We also demonstrate a wearable head-mounted device for text reading that encases a camera for image acquisition and a pair of headphones for synthesized speech output. Our system is designed for continuous and unsupervised operation over long periods of time. It is completely automatic and features quick failure recovery and interactive text reading. It is also highly parallelised in order to maximize the usage of available processing power and to achieve real-time operation. We show comparative results that improve the current state-of-the-art when correcting perspective deformation of scene text. The end-to-end system performance is demonstrated on sequences recorded in outdoor scenarios. Finally, we also release a dataset of text tracking videos along with the annotated ground-truth of text regions

    Adaptive Methods for Robust Document Image Understanding

    Get PDF
    A vast amount of digital document material is continuously being produced as part of major digitization efforts around the world. In this context, generic and efficient automatic solutions for document image understanding represent a stringent necessity. We propose a generic framework for document image understanding systems, usable for practically any document types available in digital form. Following the introduced workflow, we shift our attention to each of the following processing stages in turn: quality assurance, image enhancement, color reduction and binarization, skew and orientation detection, page segmentation and logical layout analysis. We review the state of the art in each area, identify current defficiencies, point out promising directions and give specific guidelines for future investigation. We address some of the identified issues by means of novel algorithmic solutions putting special focus on generality, computational efficiency and the exploitation of all available sources of information. More specifically, we introduce the following original methods: a fully automatic detection of color reference targets in digitized material, accurate foreground extraction from color historical documents, font enhancement for hot metal typesetted prints, a theoretically optimal solution for the document binarization problem from both computational complexity- and threshold selection point of view, a layout-independent skew and orientation detection, a robust and versatile page segmentation method, a semi-automatic front page detection algorithm and a complete framework for article segmentation in periodical publications. The proposed methods are experimentally evaluated on large datasets consisting of real-life heterogeneous document scans. The obtained results show that a document understanding system combining these modules is able to robustly process a wide variety of documents with good overall accuracy
    corecore