19 research outputs found

    Degrees of freedom region for an interference network with general message demands

    Get PDF
    We consider a single hop interference network with KK transmitters and JJ receivers, all having MM antennas. Each transmitter emits an independent message and each receiver requests an arbitrary subset of the messages. This generalizes the well-known KK-user MM-antenna interference channel, where each message is requested by a unique receiver. For our setup, we derive the degrees of freedom (DoF) region. The achievability scheme generalizes the interference alignment schemes proposed by Cadambe and Jafar. In particular, we achieve general points in the DoF region by using multiple base vectors and aligning all interferers at a given receiver to the interferer with the largest DoF. As a byproduct, we obtain the DoF region for the original interference channel. We also discuss extensions of our approach where the same region can be achieved by considering a reduced set of interference alignment constraints, thus reducing the time-expansion duration needed. The DoF region for the considered system depends only on a subset of receivers whose demands meet certain characteristics. The geometric shape of the DoF region is also discussed.Comment: 26 pages, 5 figures, revised version, submitted to IEEE Transactions on Information Theor

    Degrees of Freedom Region for an Interference Network With General Message Demands

    Full text link

    Multiple-Antenna Interference Channel with Receive Antenna Joint Processing and Real Interference Alignment

    Full text link
    We consider a constant KK-user Gaussian interference channel with MM antennas at each transmitter and NN antennas at each receiver, denoted as a (K,M,N)(K,M,N) channel. Relying on a result on simultaneous Diophantine approximation, a real interference alignment scheme with joint receive antenna processing is developed. The scheme is used to provide new proofs for two previously known results, namely 1) the total degrees of freedom (DoF) of a (K,N,N)(K, N, N) channel is NK/2NK/2; and 2) the total DoF of a (K,M,N)(K, M, N) channel is at least KMN/(M+N)KMN/(M+N). We also derive the DoF region of the (K,N,N)(K,N,N) channel, and an inner bound on the DoF region of the (K,M,N)(K,M,N) channel

    Degrees of Freedom of Full-Duplex Multiantenna Cellular Networks

    Full text link
    We study the degrees of freedom (DoF) of cellular networks in which a full duplex (FD) base station (BS) equipped with multiple transmit and receive antennas communicates with multiple mobile users. We consider two different scenarios. In the first scenario, we study the case when half duplex (HD) users, partitioned to either the uplink (UL) set or the downlink (DL) set, simultaneously communicate with the FD BS. In the second scenario, we study the case when FD users simultaneously communicate UL and DL data with the FD BS. Unlike conventional HD only systems, inter-user interference (within the cell) may severely limit the DoF, and must be carefully taken into account. With the goal of providing theoretical guidelines for designing such FD systems, we completely characterize the sum DoF of each of the two different FD cellular networks by developing an achievable scheme and obtaining a matching upper bound. The key idea of the proposed scheme is to carefully allocate UL and DL information streams using interference alignment and beamforming techniques. By comparing the DoFs of the considered FD systems with those of the conventional HD systems, we establish the DoF gain by enabling FD operation in various configurations. As a consequence of the result, we show that the DoF can approach the two-fold gain over the HD systems when the number of users becomes large enough as compared to the number of antennas at the BS.Comment: 21 pages, 16 figures, a shorter version of this paper has been submitted to the IEEE International Symposium on Information Theory (ISIT) 201

    Degrees of Freedom of Uplink-Downlink Multiantenna Cellular Networks

    Full text link
    An uplink-downlink two-cell cellular network is studied in which the first base station (BS) with M1M_1 antennas receives independent messages from its N1N_1 serving users, while the second BS with M2M_2 antennas transmits independent messages to its N2N_2 serving users. That is, the first and second cells operate as uplink and downlink, respectively. Each user is assumed to have a single antenna. Under this uplink-downlink setting, the sum degrees of freedom (DoF) is completely characterized as the minimum of (N1N2+min(M1,N1)(N1N2)++min(M2,N2)(N2N1)+)/max(N1,N2)(N_1N_2+\min(M_1,N_1)(N_1-N_2)^++\min(M_2,N_2)(N_2-N_1)^+)/\max(N_1,N_2), M1+N2,M2+N1M_1+N_2,M_2+N_1, max(M1,M2)\max(M_1,M_2), and max(N1,N2)\max(N_1,N_2), where a+a^+ denotes max(0,a)\max(0,a). The result demonstrates that, for a broad class of network configurations, operating one of the two cells as uplink and the other cell as downlink can strictly improve the sum DoF compared to the conventional uplink or downlink operation, in which both cells operate as either uplink or downlink. The DoF gain from such uplink-downlink operation is further shown to be achievable for heterogeneous cellular networks having hotspots and with delayed channel state information.Comment: 22 pages, 11 figures, in revision for IEEE Transactions on Information Theor

    Ergodic Interference Alignment

    Full text link
    This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the "X channel" case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.Comment: 16 pages, 6 figure, To appear in IEEE Transactions on Information Theor
    corecore