442 research outputs found

    Computational Processes and Incompleteness

    Full text link
    We introduce a formal definition of Wolfram's notion of computational process based on cellular automata, a physics-like model of computation. There is a natural classification of these processes into decidable, intermediate and complete. It is shown that in the context of standard finite injury priority arguments one cannot establish the existence of an intermediate computational process

    Revisiting the Complexity of Stability of Continuous and Hybrid Systems

    Full text link
    We develop a framework to give upper bounds on the "practical" computational complexity of stability problems for a wide range of nonlinear continuous and hybrid systems. To do so, we describe stability properties of dynamical systems using first-order formulas over the real numbers, and reduce stability problems to the delta-decision problems of these formulas. The framework allows us to obtain a precise characterization of the complexity of different notions of stability for nonlinear continuous and hybrid systems. We prove that bounded versions of the stability problems are generally decidable, and give upper bounds on their complexity. The unbounded versions are generally undecidable, for which we give upper bounds on their degrees of unsolvability

    The weakness of being cohesive, thin or free in reverse mathematics

    Get PDF
    Informally, a mathematical statement is robust if its strength is left unchanged under variations of the statement. In this paper, we investigate the lack of robustness of Ramsey's theorem and its consequence under the frameworks of reverse mathematics and computable reducibility. To this end, we study the degrees of unsolvability of cohesive sets for different uniformly computable sequence of sets and identify different layers of unsolvability. This analysis enables us to answer some questions of Wang about how typical sets help computing cohesive sets. We also study the impact of the number of colors in the computable reducibility between coloring statements. In particular, we strengthen the proof by Dzhafarov that cohesiveness does not strongly reduce to stable Ramsey's theorem for pairs, revealing the combinatorial nature of this non-reducibility and prove that whenever kk is greater than â„“\ell, stable Ramsey's theorem for nn-tuples and kk colors is not computably reducible to Ramsey's theorem for nn-tuples and â„“\ell colors. In this sense, Ramsey's theorem is not robust with respect to his number of colors over computable reducibility. Finally, we separate the thin set and free set theorem from Ramsey's theorem for pairs and identify an infinite decreasing hierarchy of thin set theorems in reverse mathematics. This shows that in reverse mathematics, the strength of Ramsey's theorem is very sensitive to the number of colors in the output set. In particular, it enables us to answer several related questions asked by Cholak, Giusto, Hirst and Jockusch.Comment: 31 page

    Lattice initial segments of the hyperdegrees

    Full text link
    We affirm a conjecture of Sacks [1972] by showing that every countable distributive lattice is isomorphic to an initial segment of the hyperdegrees, Dh\mathcal{D}_{h}. In fact, we prove that every sublattice of any hyperarithmetic lattice (and so, in particular, every countable locally finite lattice) is isomorphic to an initial segment of Dh\mathcal{D}_{h}. Corollaries include the decidability of the two quantifier theory of % \mathcal{D}_{h} and the undecidability of its three quantifier theory. The key tool in the proof is a new lattice representation theorem that provides a notion of forcing for which we can prove a version of the fusion lemma in the hyperarithmetic setting and so the preservation of ω1CK\omega _{1}^{CK}. Somewhat surprisingly, the set theoretic analog of this forcing does not preserve ω1\omega _{1}. On the other hand, we construct countable lattices that are not isomorphic to an initial segment of Dh\mathcal{D}_{h}

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (∀x ∃y A(x,y))⇒∃w ∀x A(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (∀x ∃y A(x,y))⇒∃z ∀x ∃y (y≤T(x,z)∧A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    Turing jumps through provability

    Full text link
    Fixing some computably enumerable theory TT, the Friedman-Goldfarb-Harrington (FGH) theorem says that over elementary arithmetic, each Σ1\Sigma_1 formula is equivalent to some formula of the form □Tφ\Box_T \varphi provided that TT is consistent. In this paper we give various generalizations of the FGH theorem. In particular, for n>1n>1 we relate Σn\Sigma_{n} formulas to provability statements [n]TTrueφ[n]_T^{\sf True}\varphi which are a formalization of "provable in TT together with all true Σn+1\Sigma_{n+1} sentences". As a corollary we conclude that each [n]TTrue[n]_T^{\sf True} is Σn+1\Sigma_{n+1}-complete. This observation yields us to consider a recursively defined hierarchy of provability predicates [n+1]T□[n+1]^\Box_T which look a lot like [n+1]TTrue[n+1]_T^{\sf True} except that where [n+1]TTrue[n+1]_T^{\sf True} calls upon the oracle of all true Σn+2\Sigma_{n+2} sentences, the [n+1]T□[n+1]^\Box_T recursively calls upon the oracle of all true sentences of the form ⟨n⟩T□ϕ\langle n \rangle_T^\Box\phi. As such we obtain a `syntax-light' characterization of Σn+1\Sigma_{n+1} definability whence of Turing jumps which is readily extended beyond the finite. Moreover, we observe that the corresponding provability predicates [n+1]T□[n+1]_T^\Box are well behaved in that together they provide a sound interpretation of the polymodal provability logic GLPω{\sf GLP}_\omega
    • …
    corecore