63,353 research outputs found

    Ant-Inspired Density Estimation via Random Walks

    Full text link
    Many ant species employ distributed population density estimation in applications ranging from quorum sensing [Pra05], to task allocation [Gor99], to appraisal of enemy colony strength [Ada90]. It has been shown that ants estimate density by tracking encounter rates -- the higher the population density, the more often the ants bump into each other [Pra05,GPT93]. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides new tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing propertieslocal\ mixing\ properties of the underlying graph. Our results extend beyond the grid to more general graphs and we discuss applications to size estimation for social networks and density estimation for robot swarms

    Measuring degree-degree association in networks

    Full text link
    The Pearson correlation coefficient is commonly used for quantifying the global level of degree-degree association in complex networks. Here, we use a probabilistic representation of the underlying network structure for assessing the applicability of different association measures to heavy-tailed degree distributions. Theoretical arguments together with our numerical study indicate that Pearson's coefficient often depends on the size of networks with equal association structure, impeding a systematic comparison of real-world networks. In contrast, Kendall-Gibbons' Ï„b\tau_{b} is a considerably more robust measure of the degree-degree association

    On Counting Triangles through Edge Sampling in Large Dynamic Graphs

    Full text link
    Traditional frameworks for dynamic graphs have relied on processing only the stream of edges added into or deleted from an evolving graph, but not any additional related information such as the degrees or neighbor lists of nodes incident to the edges. In this paper, we propose a new edge sampling framework for big-graph analytics in dynamic graphs which enhances the traditional model by enabling the use of additional related information. To demonstrate the advantages of this framework, we present a new sampling algorithm, called Edge Sample and Discard (ESD). It generates an unbiased estimate of the total number of triangles, which can be continuously updated in response to both edge additions and deletions. We provide a comparative analysis of the performance of ESD against two current state-of-the-art algorithms in terms of accuracy and complexity. The results of the experiments performed on real graphs show that, with the help of the neighborhood information of the sampled edges, the accuracy achieved by our algorithm is substantially better. We also characterize the impact of properties of the graph on the performance of our algorithm by testing on several Barabasi-Albert graphs.Comment: A short version of this article appeared in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2017

    Reliable Broadcast to A User Group with Limited Source Transmissions

    Full text link
    In order to reduce the number of retransmissions and save power for the source node, we propose a two-phase coded scheme to achieve reliable broadcast from the source to a group of users with minimal source transmissions. In the first phase, the information packets are encoded with batched sparse (BATS) code, which are then broadcasted by the source node until the file can be cooperatively decoded by the user group. In the second phase, each user broadcasts the re-encoded packets to its peers based on their respective received packets from the first phase, so that the file can be decoded by each individual user. The performance of the proposed scheme is analyzed and the rank distribution at the moment of decoding is derived, which is used as input for designing the optimal BATS code. Simulation results show that the proposed scheme can reduce the total number of retransmissions compared with the traditional single-phase broadcast with optimal erasure codes. Furthermore, since a large number of transmissions are shifted from the source node to the users, power consumptions at the source node is significantly reduced.Comment: ICC 2015. arXiv admin note: substantial text overlap with arXiv:1504.0446

    Moment-based parameter estimation in binomial random intersection graph models

    Full text link
    Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of n0n_0 nodes sampled from the full set of nn nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for n0≫n2/3≫1n_0 \gg n^{2/3} \gg 1. As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure
    • …
    corecore