9,552 research outputs found

    Statistical Mechanics of Community Detection

    Full text link
    Starting from a general \textit{ansatz}, we show how community detection can be interpreted as finding the ground state of an infinite range spin glass. Our approach applies to weighted and directed networks alike. It contains the \textit{at hoc} introduced quality function from \cite{ReichardtPRL} and the modularity QQ as defined by Newman and Girvan \cite{Girvan03} as special cases. The community structure of the network is interpreted as the spin configuration that minimizes the energy of the spin glass with the spin states being the community indices. We elucidate the properties of the ground state configuration to give a concise definition of communities as cohesive subgroups in networks that is adaptive to the specific class of network under study. Further we show, how hierarchies and overlap in the community structure can be detected. Computationally effective local update rules for optimization procedures to find the ground state are given. We show how the \textit{ansatz} may be used to discover the community around a given node without detecting all communities in the full network and we give benchmarks for the performance of this extension. Finally, we give expectation values for the modularity of random graphs, which can be used in the assessment of statistical significance of community structure

    A closure concept based on neighborhood unions of independent triples

    Get PDF
    The well-known closure concept of Bondy and Chvatal is based on degree-sums of pairs of nonadjacent (independent) vertices. We show that a more general concept due to Ainouche and Christofides can be restated in terms of degree-sums of independent triples. We introduce a closure concept which is based on neighborhood unions of independent triples and which also generalizes the closure concept of Bondy and Chvatal
    • …
    corecore