4,709 research outputs found

    Degree Optimization and Stability Condition for the Min-Sum Decoder

    Full text link
    The min-sum (MS) algorithm is arguably the second most fundamental algorithm in the realm of message passing due to its optimality (for a tree code) with respect to the {\em block error} probability \cite{Wiberg}. There also seems to be a fundamental relationship of MS decoding with the linear programming decoder \cite{Koetter}. Despite its importance, its fundamental properties have not nearly been studied as well as those of the sum-product (also known as BP) algorithm. We address two questions related to the MS rule. First, we characterize the stability condition under MS decoding. It turns out to be essentially the same condition as under BP decoding. Second, we perform a degree distribution optimization. Contrary to the case of BP decoding, under MS decoding the thresholds of the best degree distributions for standard irregular LDPC ensembles are significantly bounded away from the Shannon threshold. More precisely, on the AWGN channel, for the best codes that we find, the gap to capacity is 1dB for a rate 0.3 code and it is 0.4dB when the rate is 0.9 (the gap decreases monotonically as we increase the rate). We also used the optimization procedure to design codes for modified MS algorithm where the output of the check node is scaled by a constant 1/α1/\alpha. For α=1.25\alpha = 1.25, we observed that the gap to capacity was lesser for the modified MS algorithm when compared with the MS algorithm. However, it was still quite large, varying from 0.75 dB to 0.2 dB for rates between 0.3 and 0.9. We conclude by posing what we consider to be the most important open questions related to the MS algorithm.Comment: submitted to ITW 0

    The Effect of Saturation on Belief Propagation Decoding of LDPC Codes

    Full text link
    We consider the effect of LLR saturation on belief propagation decoding of low-density parity-check codes. Saturation occurs universally in practice and is known to have a significant effect on error floor performance. Our focus is on threshold analysis and stability of density evolution. We analyze the decoder for certain low-density parity-check code ensembles and show that belief propagation decoding generally degrades gracefully with saturation. Stability of density evolution is, on the other hand, rather strongly affected by saturation and the asymptotic qualitative effect of saturation is similar to reduction of variable node degree by one.Comment: Submitted to ISIT. Longer version to be submitted to IT Transactions in preparatio

    Protograph-Based LDPC Code Design for Ternary Message Passing Decoding

    Full text link
    A ternary message passing (TMP) decoding algorithm for low-density parity-check codes is developed. All messages exchanged between variable and check nodes have a ternary alphabet, and the variable nodes exploit soft information from the channel. A density evolution analysis is developed for unstructured and protograph-based ensembles. For unstructured ensembles the stability condition is derived. Optimized ensembles for TMP decoding show asymptotic gains of up to 0.6 dB with respect to ensembles optimized for binary message passing decoding. Finite length simulations of codes from TMP-optimized ensembles show gains of up to 0.5 dB under TMP compared to protograph-based codes designed for unquantized belief propagation decoding
    • …
    corecore