208 research outputs found

    DESIGN AND RELIABILITY ASSESSMENT OF HIGH POWER LED AND LED-BASED SOLID STATE LIGHTING

    Get PDF
    Lumen depreciation and color quality change of high power LED-based solid state light (SSL) are caused by the combination of various degradation mechanisms. The analytical/experimental models on the system as well as component-level are proposed to analyze the complex reliability issues of the LED-based solid SSL. On the system-level front, a systematic approach to define optimum design domains of LED-based SSL for a given light output requirement is developed first by taking cost, energy consumption and reliability into consideration. Three required data sets (lumen/LED, luminaire efficacy, and L70 lifetime) to define design domains are expressed as contour maps in terms of two most critical operating parameters: the forward current and the junction temperature (If and Tj). Then, the available domain of design solutions is defined as a common area that satisfies all the requirements of a luminaire. Secondly, a physic of failure (PoF) based hierarchical model is proposed to estimate the lifetime of the LED-based SSL. The model is implemented successfully for an LED-based SSL cooled by a synthetic jet, where the lifetime of a prototypical luminaire is predicted from LED lifetime data using the degradation analyses of the synthetic jet and the power electronics. On the component-level front, a mathematical model and an experimental procedure are developed to analyze the degradation mechanisms of high power LEDs. In the approach, the change in the spectral power distribution (SPD) caused by the LED degradation is decomposed into the contributions of individual degradation mechanisms so that the effect of each degradation mechanism on the final LED degradation is quantified. It is accomplished by precise deconvolution of the SPD into the leaked blue light and the phosphor converted light. The model is implemented using the SPDs of a warm white LED with conformally-coated phosphor, obtained before and after 9,000 hours of operation. The analysis quantifies the effect of each degradation mechanism on the final values of lumen, CCT and CRI

    High-Efficiency Nitride-Based Solid-State Lighting

    Full text link

    Light generation, transport, mixing and extraction in luminescent solar collectors

    Full text link
    University of Technology, Sydney. Faculty of Science.The difficulty of directing daylight deep into the heart of buildings means that much artificial lighting is required during the day, which substantially increases energy costs for lighting and air conditioning. This thesis explores the feasibility of daylighting with luminescent solar collectors. An LSC is a stack of thin sheets of polymer doped with fluorescent dyes. Sunlight entering the sheets is absorbed and emitted isotropically at longer wavelengths. 75% of this emission is trapped by total internal reflection and propagates towards the sheets’ edges. A special coupler channels some of this light into a flexible optical fibre that guides it to a remote luminaire. High quality white light with zero excess heat is produced by appropriate dye use. LSC’s collect both diffuse and specular sunlight, so their luminous output is only weakly affected by light clouds. The best previous LSC’s for daylighting gave an outdoor-to-indoor lumens-to-lumens efficiency of only 0.2%. This project achieved an efficiency of 5%. The basic tool for optical design was étendue analysis. Key results are: i) the system’s cross sectional area must not decrease along the optical path, ii) the collector sheets need a high aspect ratio, and iii) an often neglected requirement for a solid optical system with no air gaps. Other optical design problems solved include high-efficiency flat-collector-sheet to cylindrical-optical-fibre couplers and high-efficiency light extractors (which boost output by approximately 50%). Major advances in mechanical design resulted in several new practical solutions including: strong, enduring optical joints; mass produced collector-sheet to optical-fibre couplers using injection moulding with demonstrated efficiencies of 96%; affordable flexible light guides; high-performance cover materials; roof and façade mounting; and reduced mass. Required system performance is impossible without high quality LSC sheets. Maximising fluorescence yield involves detailed understanding of the roles of: dye quantum efficiency, Stokes shift, long wavelength absorption “tails”, dye dispersion, light transport inside a sheet and long term sheet stability. A substantial improvement in the performance of collector sheets was achieved. Solutions to all the key problems for daylighting with practical LSC systems have been demonstrated using outdoor mounted collectors channeling light to indoor spaces, with one key exception: the increase in absorption tails over the long term. Techniques were developed for measuring this weak tails absorption, which significantly reduces light output from the required long collector sheets. Suggestions are made as to its cause, and possible methods of its reduction

    Development of effective thermal management strategies for LED luminaires

    Get PDF
    The efficacy, reliability and versatility of the light emitting diode (LED) can outcompete most established light source technologies. However, they are particularly sensitive to high temperatures, which compromises their efficacy and reliability, undermining some of the technology s key benefits. Consequently, effective thermal management is essential to exploit the technology to its full potential. Thermal management is a well-established subject but its application in the relatively new LED lighting industry, with its specific constraints, is currently poorly defined. The question this thesis aims to answer is how can LED thermal management be achieved most effectively? This thesis starts with a review of the current state of the art, relevant thermal management technologies and market trends. This establishes current and future thermal management constraints in a commercial context. Methods to test and evaluate the thermal management performance of a luminaire system follow. The defined test methods, simulation benchmarks and operational constraints provide the foundation to develop effective thermal management strategies. Finally this work explores how the findings can be implemented in the development and comparison of multiple thermal management designs. These are optimised to assess the potential performance enhancement available when applied to a typical commercial system. The outcomes of this research showed that thermal management of LEDs can be expected to remain a key requirement but there are hints it is becoming less critical. The impacts of some common operating environments were studied, but appeared to have no significant effect on the thermal behaviour of a typical system. There are some active thermal management devices that warrant further attention, but passive systems are inherently well suited to LED luminaires and are readily adopted so were selected as the focus of this research. Using the techniques discussed in this thesis the performance of a commercially available component was evaluated. By optimising its geometry, a 5 % decrease in absolute thermal resistance or a 20 % increase in average heat transfer coefficient and 10 % reduction in heatsink mass can potentially be achieved . While greater lifecycle energy consumption savings were offered by minimising heatsink thermal resistance the most effective design was considered to be one optimised for maximum average heat transfer coefficient. Some more radical concepts were also considered. While these demonstrate the feasibility of passively manipulating fluid flow they had a detrimental impact on performance. Further analysis would be needed to conclusively dismiss these concepts but this work indicates there is very little potential in pursuing them further

    A study of visible light communication channels for high speed roadways

    Get PDF
    A visible light communication channel study is conducted for high speed roadways under clear night sky conditions in which street light poles transmit to receivers on top of moving vehicles. A detailed analysis of the communication channel is undertaken. Exact and approximate analytical DC channel responses are obtained and analyzed, and the channel capacity and RMS time delay spreads are derived. Numerical studies verify that visible light communications are feasible for high speed roadways

    ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    Full text link

    An automotive interior lighting application using white light-emitting diodes

    Get PDF
    Includes bibliographical references.In this thesis the commercially available white light-emitting diode (LED) with its inherent efficiency, longevity and mechanical strength, is used to show, that success in energy efficiency can be obtained. Two cases are used to illustrate the need for efficient demand-side technology: the electricity shortages of the Western Cape Province in South Africa and a white LED pilot project in Namulonge, Uganda

    An automotive interior lighting application using white light-emitting diodes

    Get PDF
    Includes bibliographical references.In this thesis the commercially available white light-emitting diode (LED) with its inherent efficiency, longevity and mechanical strength, is used to show, that success in energy efficiency can be obtained. Two cases are used to illustrate the need for efficient demand-side technology: the electricity shortages of the Western Cape Province in South Africa and a white LED pilot project in Namulonge, Uganda

    HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Full text link

    LED Roadway Luminaires Evaluation - Final Report

    Get PDF
    This research explores whether LEDroadway luminaire technologies are a viable future solution to providing roadway lighting. Roadway lighting enhances highway safety and traffic flow during limited lighting conditions. The purpose of this evaluation study is to determine the feasibility of transitioning from standard high pressure sodium (HPS) roadway luminaire to LED roadway luminaire on the MoDOT maintained highway system. This study includes performance evaluations, a feasibility analysis and a potential transition replacement program
    • …
    corecore