2 research outputs found

    Deformation Flow Based Two-Stream Network for Lip Reading

    Full text link
    Lip reading is the task of recognizing the speech content by analyzing movements in the lip region when people are speaking. Observing on the continuity in adjacent frames in the speaking process, and the consistency of the motion patterns among different speakers when they pronounce the same phoneme, we model the lip movements in the speaking process as a sequence of apparent deformations in the lip region. Specifically, we introduce a Deformation Flow Network (DFN) to learn the deformation flow between adjacent frames, which directly captures the motion information within the lip region. The learned deformation flow is then combined with the original grayscale frames with a two-stream network to perform lip reading. Different from previous two-stream networks, we make the two streams learn from each other in the learning process by introducing a bidirectional knowledge distillation loss to train the two branches jointly. Owing to the complementary cues provided by different branches, the two-stream network shows a substantial improvement over using either single branch. A thorough experimental evaluation on two large-scale lip reading benchmarks is presented with detailed analysis. The results accord with our motivation, and show that our method achieves state-of-the-art or comparable performance on these two challenging datasets.Comment: 7 pages, FG 202

    Learn an Effective Lip Reading Model without Pains

    Full text link
    Lip reading, also known as visual speech recognition, aims to recognize the speech content from videos by analyzing the lip dynamics. There have been several appealing progress in recent years, benefiting much from the rapidly developed deep learning techniques and the recent large-scale lip-reading datasets. Most existing methods obtained high performance by constructing a complex neural network, together with several customized training strategies which were always given in a very brief description or even shown only in the source code. We find that making proper use of these strategies could always bring exciting improvements without changing much of the model. Considering the non-negligible effects of these strategies and the existing tough status to train an effective lip reading model, we perform a comprehensive quantitative study and comparative analysis, for the first time, to show the effects of several different choices for lip reading. By only introducing some easy-to-get refinements to the baseline pipeline, we obtain an obvious improvement of the performance from 83.7% to 88.4% and from 38.2% to 55.7% on two largest public available lip reading datasets, LRW and LRW-1000, respectively. They are comparable and even surpass the existing state-of-the-art results
    corecore