67 research outputs found

    Deformable Part Models are Convolutional Neural Networks

    Full text link
    Deformable part models (DPMs) and convolutional neural networks (CNNs) are two widely used tools for visual recognition. They are typically viewed as distinct approaches: DPMs are graphical models (Markov random fields), while CNNs are "black-box" non-linear classifiers. In this paper, we show that a DPM can be formulated as a CNN, thus providing a novel synthesis of the two ideas. Our construction involves unrolling the DPM inference algorithm and mapping each step to an equivalent (and at times novel) CNN layer. From this perspective, it becomes natural to replace the standard image features used in DPM with a learned feature extractor. We call the resulting model DeepPyramid DPM and experimentally validate it on PASCAL VOC. DeepPyramid DPM significantly outperforms DPMs based on histograms of oriented gradients features (HOG) and slightly outperforms a comparable version of the recently introduced R-CNN detection system, while running an order of magnitude faster

    A Deep Pyramid Deformable Part Model for Face Detection

    Full text link
    We present a face detection algorithm based on Deformable Part Models and deep pyramidal features. The proposed method called DP2MFD is able to detect faces of various sizes and poses in unconstrained conditions. It reduces the gap in training and testing of DPM on deep features by adding a normalization layer to the deep convolutional neural network (CNN). Extensive experiments on four publicly available unconstrained face detection datasets show that our method is able to capture the meaningful structure of faces and performs significantly better than many competitive face detection algorithms

    Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge

    Full text link
    We propose a fully automatic minutiae extractor, called MinutiaeNet, based on deep neural networks with compact feature representation for fast comparison of minutiae sets. Specifically, first a network, called CoarseNet, estimates the minutiae score map and minutiae orientation based on convolutional neural network and fingerprint domain knowledge (enhanced image, orientation field, and segmentation map). Subsequently, another network, called FineNet, refines the candidate minutiae locations based on score map. We demonstrate the effectiveness of using the fingerprint domain knowledge together with the deep networks. Experimental results on both latent (NIST SD27) and plain (FVC 2004) public domain fingerprint datasets provide comprehensive empirical support for the merits of our method. Further, our method finds minutiae sets that are better in terms of precision and recall in comparison with state-of-the-art on these two datasets. Given the lack of annotated fingerprint datasets with minutiae ground truth, the proposed approach to robust minutiae detection will be useful to train network-based fingerprint matching algorithms as well as for evaluating fingerprint individuality at scale. MinutiaeNet is implemented in Tensorflow: https://github.com/luannd/MinutiaeNetComment: Accepted to International Conference on Biometrics (ICB 2018

    When Kernel Methods meet Feature Learning: Log-Covariance Network for Action Recognition from Skeletal Data

    Full text link
    Human action recognition from skeletal data is a hot research topic and important in many open domain applications of computer vision, thanks to recently introduced 3D sensors. In the literature, naive methods simply transfer off-the-shelf techniques from video to the skeletal representation. However, the current state-of-the-art is contended between to different paradigms: kernel-based methods and feature learning with (recurrent) neural networks. Both approaches show strong performances, yet they exhibit heavy, but complementary, drawbacks. Motivated by this fact, our work aims at combining together the best of the two paradigms, by proposing an approach where a shallow network is fed with a covariance representation. Our intuition is that, as long as the dynamics is effectively modeled, there is no need for the classification network to be deep nor recurrent in order to score favorably. We validate this hypothesis in a broad experimental analysis over 6 publicly available datasets.Comment: 2017 IEEE Computer Vision and Pattern Recognition (CVPR) Workshop

    Multi-view Face Detection Using Deep Convolutional Neural Networks

    Full text link
    In this paper we consider the problem of multi-view face detection. While there has been significant research on this problem, current state-of-the-art approaches for this task require annotation of facial landmarks, e.g. TSM [25], or annotation of face poses [28, 22]. They also require training dozens of models to fully capture faces in all orientations, e.g. 22 models in HeadHunter method [22]. In this paper we propose Deep Dense Face Detector (DDFD), a method that does not require pose/landmark annotation and is able to detect faces in a wide range of orientations using a single model based on deep convolutional neural networks. The proposed method has minimal complexity; unlike other recent deep learning object detection methods [9], it does not require additional components such as segmentation, bounding-box regression, or SVM classifiers. Furthermore, we analyzed scores of the proposed face detector for faces in different orientations and found that 1) the proposed method is able to detect faces from different angles and can handle occlusion to some extent, 2) there seems to be a correlation between dis- tribution of positive examples in the training set and scores of the proposed face detector. The latter suggests that the proposed methods performance can be further improved by using better sampling strategies and more sophisticated data augmentation techniques. Evaluations on popular face detection benchmark datasets show that our single-model face detector algorithm has similar or better performance compared to the previous methods, which are more complex and require annotations of either different poses or facial landmarks.Comment: in International Conference on Multimedia Retrieval 2015 (ICMR
    • …
    corecore