324 research outputs found

    Defining and Evaluating Network Communities based on Ground-truth

    Full text link
    Nodes in real-world networks organize into densely linked communities where edges appear with high concentration among the members of the community. Identifying such communities of nodes has proven to be a challenging task mainly due to a plethora of definitions of a community, intractability of algorithms, issues with evaluation and the lack of a reliable gold-standard ground-truth. In this paper we study a set of 230 large real-world social, collaboration and information networks where nodes explicitly state their group memberships. For example, in social networks nodes explicitly join various interest based social groups. We use such groups to define a reliable and robust notion of ground-truth communities. We then propose a methodology which allows us to compare and quantitatively evaluate how different structural definitions of network communities correspond to ground-truth communities. We choose 13 commonly used structural definitions of network communities and examine their sensitivity, robustness and performance in identifying the ground-truth. We show that the 13 structural definitions are heavily correlated and naturally group into four classes. We find that two of these definitions, Conductance and Triad-participation-ratio, consistently give the best performance in identifying ground-truth communities. We also investigate a task of detecting communities given a single seed node. We extend the local spectral clustering algorithm into a heuristic parameter-free community detection method that easily scales to networks with more than hundred million nodes. The proposed method achieves 30% relative improvement over current local clustering methods.Comment: Proceedings of 2012 IEEE International Conference on Data Mining (ICDM), 201

    A new hierarchical clustering algorithm to identify non-overlapping like-minded communities

    Full text link
    A network has a non-overlapping community structure if the nodes of the network can be partitioned into disjoint sets such that each node in a set is densely connected to other nodes inside the set and sparsely connected to the nodes out- side it. There are many metrics to validate the efficacy of such a structure, such as clustering coefficient, betweenness, centrality, modularity and like-mindedness. Many methods have been proposed to optimize some of these metrics, but none of these works well on the recently introduced metric like-mindedness. To solve this problem, we propose a be- havioral property based algorithm to identify communities that optimize the like-mindedness metric and compare its performance on this metric with other behavioral data based methodologies as well as community detection methods that rely only on structural data. We execute these algorithms on real-life datasets of Filmtipset and Twitter and show that our algorithm performs better than the existing algorithms with respect to the like-mindedness metric

    On methods to assess the significance of community structure in networks of financial time series

    Get PDF
    We consider the problem of determining whether the community structure found by a clustering algorithm applied to nancial time series is statistically signi cant, or is due to pure chance, when no other information than the observed values and a similarity measure among time series are available. As a subsidiary problem we also analyse the in uence of the choice of similarity measure in the accuracy of the clustering method. We propose two raw-data based methods for assessing robustness of clustering algorithms on time-dependent data linked by a relation of similarity: One based on community scoring functions that quantify some topological property that characterises ground-truth communities, and another based on random perturbations and quanti cation of the variation in the community structure. These methodologies are well-established in the realm of unweighted networks; our contribution are versions of these methodologies properly adapted to complete weighted networks.Peer ReviewedPostprint (published version
    • …
    corecore