2,859 research outputs found

    Defense Methods Against Adversarial Examples for Recurrent Neural Networks

    Full text link
    Adversarial examples are known to mislead deep learning models to incorrectly classify them, even in domains where such models achieve state-of-the-art performance. Until recently, research on both attack and defense methods focused on image recognition, primarily using convolutional neural networks (CNNs). In recent years, adversarial example generation methods for recurrent neural networks (RNNs) have been published, demonstrating that RNN classifiers are also vulnerable to such attacks. In this paper, we present a novel defense method, termed sequence squeezing, to make RNN classifiers more robust against such attacks. Our method differs from previous defense methods which were designed only for non-sequence based models. We also implement four additional RNN defense methods inspired by recently published CNN defense methods. We evaluate our methods against state-of-the-art attacks in the cyber security domain where real adversaries (malware developers) exist, but our methods can be applied against other discrete sequence based adversarial attacks, e.g., in the NLP domain. Using our methods we were able to decrease the effectiveness of such attack from 99.9% to 15%.Comment: Submitted as a conference paper to Euro S&P 202

    Towards a Robust Deep Neural Network in Texts: A Survey

    Full text link
    Deep neural networks (DNNs) have achieved remarkable success in various tasks (e.g., image classification, speech recognition, and natural language processing). However, researches have shown that DNN models are vulnerable to adversarial examples, which cause incorrect predictions by adding imperceptible perturbations into normal inputs. Studies on adversarial examples in image domain have been well investigated, but in texts the research is not enough, let alone a comprehensive survey in this field. In this paper, we aim at presenting a comprehensive understanding of adversarial attacks and corresponding mitigation strategies in texts. Specifically, we first give a taxonomy of adversarial attacks and defenses in texts from the perspective of different natural language processing (NLP) tasks, and then introduce how to build a robust DNN model via testing and verification. Finally, we discuss the existing challenges of adversarial attacks and defenses in texts and present the future research directions in this emerging field

    State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations

    Full text link
    Machine learning promises methods that generalize well from finite labeled data. However, the brittleness of existing neural net approaches is revealed by notable failures, such as the existence of adversarial examples that are misclassified despite being nearly identical to a training example, or the inability of recurrent sequence-processing nets to stay on track without teacher forcing. We introduce a method, which we refer to as \emph{state reification}, that involves modeling the distribution of hidden states over the training data and then projecting hidden states observed during testing toward this distribution. Our intuition is that if the network can remain in a familiar manifold of hidden space, subsequent layers of the net should be well trained to respond appropriately. We show that this state-reification method helps neural nets to generalize better, especially when labeled data are sparse, and also helps overcome the challenge of achieving robust generalization with adversarial training.Comment: ICML 2019 [full oral]. arXiv admin note: text overlap with arXiv:1805.0839

    ROSA: Robust Salient Object Detection against Adversarial Attacks

    Full text link
    Recently salient object detection has witnessed remarkable improvement owing to the deep convolutional neural networks which can harvest powerful features for images. In particular, state-of-the-art salient object detection methods enjoy high accuracy and efficiency from fully convolutional network (FCN) based frameworks which are trained from end to end and predict pixel-wise labels. However, such framework suffers from adversarial attacks which confuse neural networks via adding quasi-imperceptible noises to input images without changing the ground truth annotated by human subjects. To our knowledge, this paper is the first one that mounts successful adversarial attacks on salient object detection models and verifies that adversarial samples are effective on a wide range of existing methods. Furthermore, this paper proposes a novel end-to-end trainable framework to enhance the robustness for arbitrary FCN-based salient object detection models against adversarial attacks. The proposed framework adopts a novel idea that first introduces some new generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for input images with the introduced noise. Specifically, our proposed method consists of a segment-wise shielding component, which preserves boundaries and destroys delicate adversarial noise patterns and a context-aware restoration component, which refines saliency maps through global contrast modeling. Experimental results suggest that our proposed framework improves the performance significantly for state-of-the-art models on a series of datasets.Comment: To be published in IEEE Transactions on Cybernetic

    Security and Privacy Issues in Deep Learning

    Full text link
    With the development of machine learning (ML), expectations for artificial intelligence (AI) technology have been increasing daily. In particular, deep neural networks have shown outstanding performance results in many fields. Many applications are deeply involved in our daily life, such as making significant decisions in application areas based on predictions or classifications, in which a DL model could be relevant. Hence, if a DL model causes mispredictions or misclassifications due to malicious external influences, then it can cause very large difficulties in real life. Moreover, training DL models involve an enormous amount of data and the training data often include sensitive information. Therefore, DL models should not expose the privacy of such data. In this paper, we review the vulnerabilities and the developed defense methods on the security of the models and data privacy under the notion of secure and private AI (SPAI). We also discuss current challenges and open issues

    Design of intentional backdoors in sequential models

    Full text link
    Recent work has demonstrated robust mechanisms by which attacks can be orchestrated on machine learning models. In contrast to adversarial examples, backdoor or trojan attacks embed surgically modified samples with targeted labels in the model training process to cause the targeted model to learn to misclassify chosen samples in the presence of specific triggers, while keeping the model performance stable across other nominal samples. However, current published research on trojan attacks mainly focuses on classification problems, which ignores sequential dependency between inputs. In this paper, we propose methods to discreetly introduce and exploit novel backdoor attacks within a sequential decision-making agent, such as a reinforcement learning agent, by training multiple benign and malicious policies within a single long short-term memory (LSTM) network. We demonstrate the effectiveness as well as the damaging impact of such attacks through initial outcomes generated from our approach, employed on grid-world environments. We also provide evidence as well as intuition on how the trojan trigger and malicious policy is activated. Challenges with network size and unintentional triggers are identified and analogies with adversarial examples are also discussed. In the end, we propose potential approaches to defend against or serve as early detection for such attacks. Results of our work can also be extended to many applications of LSTM and recurrent networks

    MagNet: a Two-Pronged Defense against Adversarial Examples

    Full text link
    Deep learning has shown promising results on hard perceptual problems in recent years. However, deep learning systems are found to be vulnerable to small adversarial perturbations that are nearly imperceptible to human. Such specially crafted perturbations cause deep learning systems to output incorrect decisions, with potentially disastrous consequences. These vulnerabilities hinder the deployment of deep learning systems where safety or security is important. Attempts to secure deep learning systems either target specific attacks or have been shown to be ineffective. In this paper, we propose MagNet, a framework for defending neural network classifiers against adversarial examples. MagNet does not modify the protected classifier or know the process for generating adversarial examples. MagNet includes one or more separate detector networks and a reformer network. Different from previous work, MagNet learns to differentiate between normal and adversarial examples by approximating the manifold of normal examples. Since it does not rely on any process for generating adversarial examples, it has substantial generalization power. Moreover, MagNet reconstructs adversarial examples by moving them towards the manifold, which is effective for helping classify adversarial examples with small perturbation correctly. We discuss the intrinsic difficulty in defending against whitebox attack and propose a mechanism to defend against graybox attack. Inspired by the use of randomness in cryptography, we propose to use diversity to strengthen MagNet. We show empirically that MagNet is effective against most advanced state-of-the-art attacks in blackbox and graybox scenarios while keeping false positive rate on normal examples very low.Comment: Accepted at the ACM Conference on Computer and Communications Security (CCS), 201

    Neural Networks in Adversarial Setting and Ill-Conditioned Weight Space

    Full text link
    Recently, Neural networks have seen a huge surge in its adoption due to their ability to provide high accuracy on various tasks. On the other hand, the existence of adversarial examples have raised suspicions regarding the generalization capabilities of neural networks. In this work, we focus on the weight matrix learnt by the neural networks and hypothesize that ill conditioned weight matrix is one of the contributing factors in neural network's susceptibility towards adversarial examples. For ensuring that the learnt weight matrix's condition number remains sufficiently low, we suggest using orthogonal regularizer. We show that this indeed helps in increasing the adversarial accuracy on MNIST and F-MNIST datasets

    Is Machine Learning in Power Systems Vulnerable?

    Full text link
    Recent advances in Machine Learning(ML) have led to its broad adoption in a series of power system applications, ranging from meter data analytics, renewable/load/price forecasting to grid security assessment. Although these data-driven methods yield state-of-the-art performances in many tasks, the robustness and security of applying such algorithms in modern power grids have not been discussed. In this paper, we attempt to address the issues regarding the security of ML applications in power systems. We first show that most of the current ML algorithms proposed in power systems are vulnerable to adversarial examples, which are maliciously crafted input data. We then adopt and extend a simple yet efficient algorithm for finding subtle perturbations, which could be used for generating adversaries for both categorical(e.g., user load profile classification) and sequential applications(e.g., renewables generation forecasting). Case studies on classification of power quality disturbances and forecast of building loads demonstrate the vulnerabilities of current ML algorithms in power networks under our adversarial designs. These vulnerabilities call for design of robust and secure ML algorithms for real world applications.Comment: Accepted to IEEE SmartGridComm201

    Characterizing Audio Adversarial Examples Using Temporal Dependency

    Full text link
    Recent studies have highlighted adversarial examples as a ubiquitous threat to different neural network models and many downstream applications. Nonetheless, as unique data properties have inspired distinct and powerful learning principles, this paper aims to explore their potentials towards mitigating adversarial inputs. In particular, our results reveal the importance of using the temporal dependency in audio data to gain discriminate power against adversarial examples. Tested on the automatic speech recognition (ASR) tasks and three recent audio adversarial attacks, we find that (i) input transformation developed from image adversarial defense provides limited robustness improvement and is subtle to advanced attacks; (ii) temporal dependency can be exploited to gain discriminative power against audio adversarial examples and is resistant to adaptive attacks considered in our experiments. Our results not only show promising means of improving the robustness of ASR systems, but also offer novel insights in exploiting domain-specific data properties to mitigate negative effects of adversarial examples
    • …
    corecore