892 research outputs found

    Attention, Please! Adversarial Defense via Attention Rectification and Preservation

    Full text link
    This study provides a new understanding of the adversarial attack problem by examining the correlation between adversarial attack and visual attention change. In particular, we observed that: (1) images with incomplete attention regions are more vulnerable to adversarial attacks; and (2) successful adversarial attacks lead to deviated and scattered attention map. Accordingly, an attention-based adversarial defense framework is designed to simultaneously rectify the attention map for prediction and preserve the attention area between adversarial and original images. The problem of adding iteratively attacked samples is also discussed in the context of visual attention change. We hope the attention-related data analysis and defense solution in this study will shed some light on the mechanism behind the adversarial attack and also facilitate future adversarial defense/attack model design

    Stylized Adversarial Defense

    Full text link
    Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model. Specifically, we use the style and content information of the target sample from another class, alongside its class boundary information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and the target image. Our adversarial training approach demonstrates strong robustness compared to state of the art defenses, generalizes well to naturally occurring corruptions and data distributional shifts, and retains the model accuracy on clean examples.Comment: Code is available at this http https://github.com/Muzammal-Naseer/SA

    Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization

    Full text link
    Adversarial examples cause neural networks to produce incorrect outputs with high confidence. Although adversarial training is one of the most effective forms of defense against adversarial examples, unfortunately, a large gap exists between test accuracy and training accuracy in adversarial training. In this paper, we identify Adversarial Feature Overfitting (AFO), which may cause poor adversarially robust generalization, and we show that adversarial training can overshoot the optimal point in terms of robust generalization, leading to AFO in our simple Gaussian model. Considering these theoretical results, we present soft labeling as a solution to the AFO problem. Furthermore, we propose Adversarial Vertex mixup (AVmixup), a soft-labeled data augmentation approach for improving adversarially robust generalization. We complement our theoretical analysis with experiments on CIFAR10, CIFAR100, SVHN, and Tiny ImageNet, and show that AVmixup significantly improves the robust generalization performance and that it reduces the trade-off between standard accuracy and adversarial robustness.Comment: To appear in CVPR 2020 (Oral

    Improving Model Robustness with Latent Distribution Locally and Globally

    Full text link
    In this work, we consider model robustness of deep neural networks against adversarial attacks from a global manifold perspective. Leveraging both the local and global latent information, we propose a novel adversarial training method through robust optimization, and a tractable way to generate Latent Manifold Adversarial Examples (LMAEs) via an adversarial game between a discriminator and a classifier. The proposed adversarial training with latent distribution (ATLD) method defends against adversarial attacks by crafting LMAEs with the latent manifold in an unsupervised manner. ATLD preserves the local and global information of latent manifold and promises improved robustness against adversarial attacks. To verify the effectiveness of our proposed method, we conduct extensive experiments over different datasets (e.g., CIFAR-10, CIFAR-100, SVHN) with different adversarial attacks (e.g., PGD, CW), and show that our method substantially outperforms the state-of-the-art (e.g., Feature Scattering) in adversarial robustness by a large accuracy margin. The source codes are available at https://github.com/LitterQ/ATLD-pytorch

    MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems

    Full text link
    Automatic speech recognition (ASR) systems based on deep neural networks are weak against adversarial perturbations. We propose mixPGD adversarial training method to improve the robustness of the model for ASR systems. In standard adversarial training, adversarial samples are generated by leveraging supervised or unsupervised methods. We merge the capabilities of both supervised and unsupervised approaches in our method to generate new adversarial samples which aid in improving model robustness. Extensive experiments and comparison across various state-of-the-art defense methods and adversarial attacks have been performed to show that mixPGD gains 4.1% WER of better performance than previous best performing models under white-box adversarial attack setting. We tested our proposed defense method against both white-box and transfer based black-box attack settings to ensure that our defense strategy is robust against various types of attacks. Empirical results on several adversarial attacks validate the effectiveness of our proposed approach
    corecore