2 research outputs found

    CORRELATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES WITH SOFT COMPUTING IN VARIOUS AREAS

    Get PDF
    Artificial Intelligence (AI) is a part of computer science concerned with designing intelligent computer systems that exhibit the characteristics used to associate with intelligence in human behavior. Basically, it define as a field that study and design of intelligent agents. Traditional AI approach deals with cognitive and biological models that imitate and describe human information processing skills. This processing skills help to perceive and interact with their environment. But in modern era developers can build system that assemble superior information processing needs of government and industry by choosing from large areas of mature technologies. Soft Computing (SC) is an added area of AI. It focused on the design of intelligent systems that process uncertain, imprecise and incomplete information. It applied in real world problems frequently to offer more robust, tractable and less costly solutions than those obtained by more conventional mathematical techniques. This paper reviews correlation of artificial intelligence techniques with soft computing in various areas

    Defending against XML-related attacks in e-commerce applications with predictive fuzzy associative rules

    No full text
    Security administrators need to prioritise which feature to focus on amidst the various possibilities and avenues of attack, especially via Web Service in e-commerce applications. This study addresses the feature selection problem by proposing a predictive fuzzy associative rule model (FARM). FARM validates inputs by segregating the anomalies based fuzzy associative patterns discovered from five attributes in the intrusion datasets. These associative patterns leads to the discovery of a set of 18 interesting rules at 99% confidence and subsequently, categorisation into not only certainly allow/deny but also probably deny access decision class. FARM's classification provides 99% classification accuracy and less than 1% false alarm rate. Our findings indicate two benefits to using fuzzy datasets. First, fuzzy enables the discovery of fuzzy association patterns, fuzzy association rules and more sensitive classification. In addition, the root mean squared error (RMSE) and classification accuracy for fuzzy and crisp datasets do not differ much when using the Random Forest classifier. However, when other classifiers are used with increasing number of instances on the fuzzy and crisp datasets, the fuzzy datasets perform much better. Future research will involve experimentation on bigger data sets on different data types
    corecore