71,104 research outputs found

    Surface magnetization in non-doped ZnO nanostructures

    Full text link
    We have investigated the magnetic properties of non-doped ZnO nanostructures by using {\it ab initio} total energy calculations. Contrary to many proposals that ferromagnetism in non-doped semiconductors should be induced by intrinsic point defects, we show that ferromagnetism in nanostructured materials should be mediated by extended defects such as surfaces and grain boundaries. This kind of defects create delocalized, spin polarized states that should be able to warrant long-range magnetic interactions.Comment: 8 pages, 3 figure

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    Full text link
    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.Comment: In press. 32 pages, 4 figures, 3 tables, Scientific Reports 201

    DC-transport properties of ferromagnetic (Ga,Mn)As semiconductors

    Full text link
    We study the dc transport properties of (Ga,Mn)As diluted magnetic semiconductors with Mn concentration varying from 1.5% to 8%. Both diagonal and Hall components of the conductivity tensor are strongly sensitive to the magnetic state of these semiconductors. Transport data obtained at low temperatures are discussed theoretically within a model of band-hole quasiparticles with a finite spectral width due to elastic scattering from Mn and compensating defects. The theoretical results are in good agreement with measured anomalous Hall effect and anisotropic longitudinal magnetoresistance data. This quantitative understanding of dc magneto-transport effects in (Ga,Mn)As is unparalleled in itinerant ferromagnetic systems.Comment: 3 pages, 3 figure

    Electronegativity and doping in Si1-xGex alloys

    Get PDF
    Silicon germanium alloys are technologically important in microelectronics but also they are an important paradigm and model system to study the intricacies of the defect processes on random alloys. The key in semiconductors is that dopants and defects can tune their electronic properties and although their impact is well established in elemental semiconductors such as silicon they are not well characterized in random semiconductor alloys such as silicon germanium. In particular the impact of electronegativity of the local environment on the electronic properties of the dopant atom needs to be clarified. Here we employ density functional theory in conjunction with special quasirandom structures model to show that the Bader charge of the dopant atoms is strongly dependent upon the nearest neighbor environment. This in turn implies that the dopants will behave differently is silicon-rich and germanium-rich regions of the silicon germanium alloy

    Accurate formation energies of charged defects in solids: a systematic approach

    Full text link
    Defects on surfaces of semiconductors have a strong effect on their reactivity and catalytic properties. The concentration of different charge states of defects is determined by their formation energies. First-principles calculations are an important tool for computing defect formation energies and for studying the microscopic environment of the defect. The main problem associated with the widely used supercell method in these calculations is the error in the electrostatic energy, which is especially pronounced in calculations that involve surface slabs and 2D materials. We present an internally consistent approach for calculating defect formation energies in inhomogeneous and anisotropic dielectric environments, and demonstrate its applicability to the cases of the positively charged Cl vacancy on the NaCl (100) surface and the negatively charged S vacancy in monolayer MoS2

    How to make semiconductors ferromagnetic: A first course on spintronics

    Full text link
    The rapidly developing field of ferromagnetism in diluted magnetic semiconductors, where a semiconductor host is magnetically doped by transition metal impurities to produce a ferromagnetic semiconductor (e.g. Ga_{1-x}Mn_xAs with x ~ 1-10 %), is discussed with the emphasis on elucidating the physical mechanisms underlying the magnetic properties. Recent key developments are summarized with critical discussions of the roles of disorder, localization, band structure, defects, and the choice of materials in producing good magnetic quality and high Curie temperature. The correlation between magnetic and transport properties is argued to be a crucial ingredient in developing a full understanding of the properties of ferromagnetic semiconductors.Comment: 8 pages; to appear in the special issue 'Quantum Phases at Nanoscale' of Solid State Communication
    corecore