2,076,737 research outputs found
Moody's Correlated Binomial Default Distributions for Inhomogeneous Portfolios
This paper generalizes Moody's correlated binomial default distribution for
homogeneous (exchangeable) credit portfolio, which is introduced by Witt, to
the case of inhomogeneous portfolios. As inhomogeneous portfolios, we consider
two cases. In the first case, we treat a portfolio whose assets have uniform
default correlation and non-uniform default probabilities. We obtain the
default probability distribution and study the effect of the inhomogeneity on
it. The second case corresponds to a portfolio with inhomogeneous default
correlation. Assets are categorized in several different sectors and the
inter-sector and intra-sector correlations are not the same. We construct the
joint default probabilities and obtain the default probability distribution. We
show that as the number of assets in each sector decreases, inter-sector
correlation becomes more important than intra-sector correlation. We study the
maximum values of the inter-sector default correlation. Our generalization
method can be applied to any correlated binomial default distribution model
which has explicit relations to the conditional default probabilities or
conditional default correlations, e.g. Credit Risk, implied default
distributions. We also compare some popular CDO pricing models from the
viewpoint of the range of the implied tranche correlation.Comment: 29 pages, 17 figures and 1 tabl
Delayed Default Dependency and Default Contagion
Delayed, hence non-simultaneous, dependent defaults are discussed in a reduced form model. The model is a generalization of a multi-factor model based on simultaneous defaults to incorporate delayed defaults. It provides a natural smoothening of discontinuities in the joint probability densities in models with simultaneous defaults. It is a dynamic model that exhibits default contagion in a multi-factor setting. It admits an efficient Monte Carlo simulation algorithm that can handle heterogeneous collections of credit names. It can be calibrated to provide exact fits to CDX.NA.IG and iTraxx Europe CDOs just as its version with simultaneous defaults.Default Risk; Default Correlation; Default Contagion; Delayed Default; CDO; Monte Carlo
Default Estimation for Low-Default Portfolios
The problem in default probability estimation for low-default portfolios is that there is little relevant historical data information. No amount of data processing can fix this problem. More information is required. Incorporating expert opinion formally is an attractive option.
Forecasting Credit Portfolio Risk
The main challenge of forecasting credit default risk in loan portfolios is forecasting the default probabilities and the default correlations. We derive a Merton-style threshold-value model for the default probability which treats the asset value of a firm as unknown and uses a factor model instead. In addition, we demonstrate how default correlations can be easily modeled. The empirical analysis is based on a large data set of German firms provided by Deutsche Bundesbank. We find that the inclusion of variables which are correlated with the business cycle improves the forecasts of default probabilities. Asset and default correlations depend on the factors used to model default probabilities. The better the point-in-time calibration of the estimated default probabilities, the smaller the estimated correlations. Thus, correlations and default probabilities should always be estimated simultaneously. --asset correlation,bank regulation,Basel II,credit risk,default correlation,default probability,logit model,probit model
Molecular Realism in Default Models for Information Theories of Hydrophobic Effects
This letter considers several physical arguments about contributions to
hydrophobic hydration of inert gases, constructs default models to test them
within information theories, and gives information theory predictions using
those default models with moment information drawn from simulation of liquid
water. Tested physical features include: packing or steric effects, the role of
attractive forces that lower the solvent pressure, and the roughly tetrahedral
coordination of water molecules in liquid water. Packing effects (hard sphere
default model) and packing effects plus attractive forces (Lennard-Jones
default model) are ineffective in improving the prediction of hydrophobic
hydration free energies of inert gases over the previously used Gibbs and flat
default models. However, a conceptually simple cluster Poisson model that
incorporates tetrahedral coordination structure in the default model is one of
the better performers for these predictions. These results provide a partial
rationalization of the remarkable performance of the flat default model with
two moments in previous applications. The cluster Poisson default model thus
will be the subject of further refinement.Comment: 5 pages including 3 figure
- …
