4 research outputs found

    Multi-scale Processing of Noisy Images using Edge Preservation Losses

    Full text link
    Noisy images processing is a fundamental task of computer vision. The first example is the detection of faint edges in noisy images, a challenging problem studied in the last decades. A recent study introduced a fast method to detect faint edges in the highest accuracy among all the existing approaches. Their complexity is nearly linear in the image's pixels and their runtime is seconds for a noisy image. Their approach utilizes a multi-scale binary partitioning of the image. By utilizing the multi-scale U-net architecture, we show in this paper that their method can be dramatically improved in both aspects of run time and accuracy. By training the network on a dataset of binary images, we developed an approach for faint edge detection that works in a linear complexity. Our runtime of a noisy image is milliseconds on a GPU. Even though our method is orders of magnitude faster, we still achieve higher accuracy of detection under many challenging scenarios. In addition, we show that our approach to performing multi-scale preprocessing of noisy images using U-net improves the ability to perform other vision tasks under the presence of noise. We prove it on the problems of noisy objects classification and classical image denoising. We show that multi-scale denoising can be carried out by a novel edge preservation loss. As our experiments show, we achieve high-quality results in the three aspects of faint edge detection, noisy image classification and natural image denoising

    SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution

    Full text link
    Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems remaining unsolved, such as how to recover high frequency details of high resolution images. Previous CNN based models always use a pixel wise loss, such as l2 loss. Although the high resolution images constructed by these models have high peak signal-to-noise ratio (PSNR), they often tend to be blurry and lack high-frequency details, especially at a large scaling factor. In this paper, we build a super resolution perceptual generative adversarial network (SRPGAN) framework for SISR tasks. In the framework, we propose a robust perceptual loss based on the discriminator of the built SRPGAN model. We use the Charbonnier loss function to build the content loss and combine it with the proposed perceptual loss and the adversarial loss. Compared with other state-of-the-art methods, our method has demonstrated great ability to construct images with sharp edges and rich details. We also evaluate our method on different benchmarks and compare it with previous CNN based methods. The results show that our method can achieve much higher structural similarity index (SSIM) scores on most of the benchmarks than the previous state-of-art methods

    Connecting Image Denoising and High-Level Vision Tasks via Deep Learning

    Full text link
    Image denoising and high-level vision tasks are usually handled independently in the conventional practice of computer vision, and their connection is fragile. In this paper, we cope with the two jointly and explore the mutual influence between them with the focus on two questions, namely (1) how image denoising can help improving high-level vision tasks, and (2) how the semantic information from high-level vision tasks can be used to guide image denoising. First for image denoising we propose a convolutional neural network in which convolutions are conducted in various spatial resolutions via downsampling and upsampling operations in order to fuse and exploit contextual information on different scales. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We experimentally show that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network produces more visually appealing results. Extensive experiments demonstrate the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning. The code is available online: https://github.com/Ding-Liu/DeepDenoisingComment: arXiv admin note: text overlap with arXiv:1706.0428

    A Multiscale Image Denoising Algorithm Based On Dilated Residual Convolution Network

    Full text link
    Image denoising is a classical problem in low level computer vision. Model-based optimization methods and deep learning approaches have been the two main strategies for solving the problem. Model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming. In contrast, deep learning methods have fast testing speed but the performance of these CNNs is still inferior. To address this issue, here we propose a novel deep residual learning model that combines the dilated residual convolution and multi-scale convolution groups. Due to the complex patterns and structures of inside an image, the multiscale convolution group is utilized to learn those patterns and enlarge the receptive field. Specifically, the residual connection and batch normalization are utilized to speed up the training process and maintain the denoising performance. In order to decrease the gridding artifacts, we integrate the hybrid dilated convolution design into our model. To this end, this paper aims to train a lightweight and effective denoiser based on multiscale convolution group. Experimental results have demonstrated that the enhanced denoiser can not only achieve promising denoising results, but also become a strong competitor in practical application
    corecore