980,617 research outputs found
Deep Q-Learning for Self-Organizing Networks Fault Management and Radio Performance Improvement
We propose an algorithm to automate fault management in an outdoor cellular
network using deep reinforcement learning (RL) against wireless impairments.
This algorithm enables the cellular network cluster to self-heal by allowing RL
to learn how to improve the downlink signal to interference plus noise ratio
through exploration and exploitation of various alarm corrective actions. The
main contributions of this paper are to 1) introduce a deep RL-based fault
handling algorithm which self-organizing networks can implement in a polynomial
runtime and 2) show that this fault management method can improve the radio
link performance in a realistic network setup. Simulation results show that our
proposed algorithm learns an action sequence to clear alarms and improve the
performance in the cellular cluster better than existing algorithms, even
against the randomness of the network fault occurrences and user movements.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other work
Deep residual learning in CT physics: scatter correction for spectral CT
Recently, spectral CT has been drawing a lot of attention in a variety of
clinical applications primarily due to its capability of providing quantitative
information about material properties. The quantitative integrity of the
reconstructed data depends on the accuracy of the data corrections applied to
the measurements. Scatter correction is a particularly sensitive correction in
spectral CT as it depends on system effects as well as the object being imaged
and any residual scatter is amplified during the non-linear material
decomposition. An accurate way of removing scatter is subtracting the scatter
estimated by Monte Carlo simulation. However, to get sufficiently good scatter
estimates, extremely large numbers of photons is required, which may lead to
unexpectedly high computational costs. Other approaches model scatter as a
convolution operation using kernels derived using empirical methods. These
techniques have been found to be insufficient in spectral CT due to their
inability to sufficiently capture object dependence. In this work, we develop a
deep residual learning framework to address both issues of computation
simplicity and object dependency. A deep convolution neural network is trained
to determine the scatter distribution from the projection content in training
sets. In test cases of a digital anthropomorphic phantom and real water
phantom, we demonstrate that with much lower computing costs, the proposed
network provides sufficiently accurate scatter estimation
Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification
Designing discriminative powerful texture features robust to realistic
imaging conditions is a challenging computer vision problem with many
applications, including material recognition and analysis of satellite or
aerial imagery. In the past, most texture description approaches were based on
dense orderless statistical distribution of local features. However, most
recent approaches to texture recognition and remote sensing scene
classification are based on Convolutional Neural Networks (CNNs). The d facto
practice when learning these CNN models is to use RGB patches as input with
training performed on large amounts of labeled data (ImageNet). In this paper,
we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained
using mapped coded images with explicit texture information provide
complementary information to the standard RGB deep models. Additionally, two
deep architectures, namely early and late fusion, are investigated to combine
the texture and color information. To the best of our knowledge, we are the
first to investigate Binary Patterns encoded CNNs and different deep network
fusion architectures for texture recognition and remote sensing scene
classification. We perform comprehensive experiments on four texture
recognition datasets and four remote sensing scene classification benchmarks:
UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with
7 categories and the recently introduced large scale aerial image dataset (AID)
with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary
information to standard RGB deep model of the same network architecture. Our
late fusion TEX-Net architecture always improves the overall performance
compared to the standard RGB network on both recognition problems. Our final
combination outperforms the state-of-the-art without employing fine-tuning or
ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin
Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns
We introduce Deep Thermal Imaging, a new approach for close-range automatic
recognition of materials to enhance the understanding of people and ubiquitous
technologies of their proximal environment. Our approach uses a low-cost mobile
thermal camera integrated into a smartphone to capture thermal textures. A deep
neural network classifies these textures into material types. This approach
works effectively without the need for ambient light sources or direct contact
with materials. Furthermore, the use of a deep learning network removes the
need to handcraft the set of features for different materials. We evaluated the
performance of the system by training it to recognise 32 material types in both
indoor and outdoor environments. Our approach produced recognition accuracies
above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584
images of 17 outdoor materials. We conclude by discussing its potentials for
real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing
System
High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference
We propose a data-driven method for recovering miss-ing parts of 3D shapes.
Our method is based on a new deep learning architecture consisting of two
sub-networks: a global structure inference network and a local geometry
refinement network. The global structure inference network incorporates a long
short-term memorized context fusion module (LSTM-CF) that infers the global
structure of the shape based on multi-view depth information provided as part
of the input. It also includes a 3D fully convolutional (3DFCN) module that
further enriches the global structure representation according to volumetric
information in the input. Under the guidance of the global structure network,
the local geometry refinement network takes as input lo-cal 3D patches around
missing regions, and progressively produces a high-resolution, complete surface
through a volumetric encoder-decoder architecture. Our method jointly trains
the global structure inference and local geometry refinement networks in an
end-to-end manner. We perform qualitative and quantitative evaluations on six
object categories, demonstrating that our method outperforms existing
state-of-the-art work on shape completion.Comment: 8 pages paper, 11 pages supplementary material, ICCV spotlight pape
- …
