3 research outputs found

    Deep synthesis regularization of inverse problems

    Full text link
    Recently, a large number of efficient deep learning methods for solving inverse problems have been developed and show outstanding numerical performance. For these deep learning methods, however, a solid theoretical foundation in the form of reconstruction guarantees is missing. In contrast, for classical reconstruction methods, such as convex variational and frame-based regularization, theoretical convergence and convergence rate results are well established. In this paper, we introduce deep synthesis regularization (DESYRE) using neural networks as nonlinear synthesis operator bridging the gap between these two worlds. The proposed method allows to exploit the deep learning benefits of being well adjustable to available training data and on the other hand comes with a solid mathematical foundation. We present a complete convergence analysis with convergence rates for the proposed deep synthesis regularization. We present a strategy for constructing a synthesis network as part of an analysis-synthesis sequence together with an appropriate training strategy. Numerical results show the plausibility of our approach.Comment: Submitted to IEEE Trans. Image Processin

    Sparse aNETT for Solving Inverse Problems with Deep Learning

    Full text link
    We propose a sparse reconstruction framework (aNETT) for solving inverse problems. Opposed to existing sparse reconstruction techniques that are based on linear sparsifying transforms, we train an autoencoder network D∘ED \circ E with EE acting as a nonlinear sparsifying transform and minimize a Tikhonov functional with learned regularizer formed by the β„“q\ell^q-norm of the encoder coefficients and a penalty for the distance to the data manifold. We propose a strategy for training an autoencoder based on a sample set of the underlying image class such that the autoencoder is independent of the forward operator and is subsequently adapted to the specific forward model. Numerical results are presented for sparse view CT, which clearly demonstrate the feasibility, robustness and the improved generalization capability and stability of aNETT over post-processing networks.Comment: The original proceeding is part of the ISBI 2020 and only contains 4 pages due to page restriction

    Regularization of Inverse Problems by Neural Networks

    Full text link
    Inverse problems arise in a variety of imaging applications including computed tomography, non-destructive testing, and remote sensing. The characteristic features of inverse problems are the non-uniqueness and instability of their solutions. Therefore, any reasonable solution method requires the use of regularization tools that select specific solutions and at the same time stabilize the inversion process. Recently, data-driven methods using deep learning techniques and neural networks demonstrated to significantly outperform classical solution methods for inverse problems. In this chapter, we give an overview of inverse problems and demonstrate the necessity of regularization concepts for their solution. We show that neural networks can be used for the data-driven solution of inverse problems and review existing deep learning methods for inverse problems. In particular, we view these deep learning methods from the perspective of regularization theory, the mathematical foundation of stable solution methods for inverse problems. This chapter is more than just a review as many of the presented theoretical results extend existing ones
    corecore