2 research outputs found

    Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI Acquisition

    Full text link
    Typical Magnetic Resonance Imaging (MRI) scan may take 20 to 60 minutes. Reducing MRI scan time is beneficial for both patient experience and cost considerations. Accelerated MRI scan may be achieved by acquiring less amount of k-space data (down-sampling in the k-space). However, this leads to lower resolution and aliasing artifacts for the reconstructed images. There are many existing approaches for attempting to reconstruct high-quality images from down-sampled k-space data, with varying complexity and performance. In recent years, deep-learning approaches have been proposed for this task, and promising results have been reported. Still, the problem remains challenging especially because of the high fidelity requirement in most medical applications employing reconstructed MRI images. In this work, we propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition. Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images, employing a U-Net-like architecture. Further, a micro-architecture termed Residual Dense Block (RDB) is introduced for learning a better feature representation than the plain U-Net. Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data during training to provide additional regularization on the update of the network weights. To evaluate the proposed approach, we compare it with other state-of-the-art methods. In both visual inspection and evaluation using standard metrics, the proposed approach is able to deliver improved performance, demonstrating its potential for providing an effective solution.Comment: SPIE Medical Imaging 201

    Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data

    Full text link
    Magnetic resonance imaging is a powerful imaging modality that can provide versatile information but it has a bottleneck problem "slow imaging speed". Reducing the scanned measurements can accelerate MR imaging with the aid of powerful reconstruction methods, which have evolved from linear analytic models to nonlinear iterative ones. The emerging trend in this area is replacing human-defined signal models with that learned from data. Specifically, from 2016, deep learning has been incorporated into the fast MR imaging task, which draws valuable prior knowledge from big datasets to facilitate accurate MR image reconstruction from limited measurements. This survey aims to review deep learning based MR image reconstruction works from 2016- June 2020 and will discuss merits, limitations and challenges associated with such methods. Last but not least, this paper will provide a starting point for researchers interested in contributing to this field by pointing out good tutorial resources, state-of-the-art open-source codes and meaningful data sources.Comment: Invited review submitted to Biomedical signal processing and control in Jan 202
    corecore