765 research outputs found

    Learning to Extract Coherent Summary via Deep Reinforcement Learning

    Full text link
    Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.Comment: 8 pages, 1 figure, presented at AAAI-201

    Guiding Extractive Summarization with Question-Answering Rewards

    Full text link
    Highlighting while reading is a natural behavior for people to track salient content of a document. It would be desirable to teach an extractive summarizer to do the same. However, a major obstacle to the development of a supervised summarizer is the lack of ground-truth. Manual annotation of extraction units is cost-prohibitive, whereas acquiring labels by automatically aligning human abstracts and source documents can yield inferior results. In this paper we describe a novel framework to guide a supervised, extractive summarization system with question-answering rewards. We argue that quality summaries should serve as a document surrogate to answer important questions, and such question-answer pairs can be conveniently obtained from human abstracts. The system learns to promote summaries that are informative, fluent, and perform competitively on question-answering. Our results compare favorably with those reported by strong summarization baselines as evaluated by automatic metrics and human assessors.Comment: NAACL 201

    HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization

    Full text link
    Neural extractive summarization models usually employ a hierarchical encoder for document encoding and they are trained using sentence-level labels, which are created heuristically using rule-based methods. Training the hierarchical encoder with these \emph{inaccurate} labels is challenging. Inspired by the recent work on pre-training transformer sentence encoders \cite{devlin:2018:arxiv}, we propose {\sc Hibert} (as shorthand for {\bf HI}erachical {\bf B}idirectional {\bf E}ncoder {\bf R}epresentations from {\bf T}ransformers) for document encoding and a method to pre-train it using unlabeled data. We apply the pre-trained {\sc Hibert} to our summarization model and it outperforms its randomly initialized counterpart by 1.25 ROUGE on the CNN/Dailymail dataset and by 2.0 ROUGE on a version of New York Times dataset. We also achieve the state-of-the-art performance on these two datasets.Comment: to appear in ACL 201

    From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information

    Full text link
    Text summarization is the research area aiming at creating a short and condensed version of the original document, which conveys the main idea of the document in a few words. This research topic has started to attract the attention of a large community of researchers, and it is nowadays counted as one of the most promising research areas. In general, text summarization algorithms aim at using a plain text document as input and then output a summary. However, in real-world applications, most of the data is not in a plain text format. Instead, there is much manifold information to be summarized, such as the summary for a web page based on a query in the search engine, extreme long document (e.g., academic paper), dialog history and so on. In this paper, we focus on the survey of these new summarization tasks and approaches in the real-world application.Comment: Accepted by IJCAI 2020 Survey Trac

    Deep Transfer Reinforcement Learning for Text Summarization

    Full text link
    Deep neural networks are data hungry models and thus face difficulties when attempting to train on small text datasets. Transfer learning is a potential solution but their effectiveness in the text domain is not as explored as in areas such as image analysis. In this paper, we study the problem of transfer learning for text summarization and discuss why existing state-of-the-art models fail to generalize well on other (unseen) datasets. We propose a reinforcement learning framework based on a self-critic policy gradient approach which achieves good generalization and state-of-the-art results on a variety of datasets. Through an extensive set of experiments, we also show the ability of our proposed framework to fine-tune the text summarization model using only a few training samples. To the best of our knowledge, this is the first work that studies transfer learning in text summarization and provides a generic solution that works well on unseen data

    Reference and Document Aware Semantic Evaluation Methods for Korean Language Summarization

    Full text link
    Text summarization refers to the process that generates a shorter form of text from the source document preserving salient information. Many existing works for text summarization are generally evaluated by using recall-oriented understudy for gisting evaluation (ROUGE) scores. However, as ROUGE scores are computed based on n-gram overlap, they do not reflect semantic meaning correspondences between generated and reference summaries. Because Korean is an agglutinative language that combines various morphemes into a word that express several meanings, ROUGE is not suitable for Korean summarization. In this paper, we propose evaluation metrics that reflect semantic meanings of a reference summary and the original document, Reference and Document Aware Semantic Score (RDASS). We then propose a method for improving the correlation of the metrics with human judgment. Evaluation results show that the correlation with human judgment is significantly higher for our evaluation metrics than for ROUGE scores.Comment: COLING 202

    A novel repetition normalized adversarial reward for headline generation

    Full text link
    While reinforcement learning can effectively improve language generation models, it often suffers from generating incoherent and repetitive phrases \cite{paulus2017deep}. In this paper, we propose a novel repetition normalized adversarial reward to mitigate these problems. Our repetition penalized reward can greatly reduce the repetition rate and adversarial training mitigates generating incoherent phrases. Our model significantly outperforms the baseline model on ROUGE-1\,(+3.24), ROUGE-L\,(+2.25), and a decreased repetition-rate (-4.98\%).Comment: Accepted by ICASSP 201

    Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting

    Full text link
    Inspired by how humans summarize long documents, we propose an accurate and fast summarization model that first selects salient sentences and then rewrites them abstractively (i.e., compresses and paraphrases) to generate a concise overall summary. We use a novel sentence-level policy gradient method to bridge the non-differentiable computation between these two neural networks in a hierarchical way, while maintaining language fluency. Empirically, we achieve the new state-of-the-art on all metrics (including human evaluation) on the CNN/Daily Mail dataset, as well as significantly higher abstractiveness scores. Moreover, by first operating at the sentence-level and then the word-level, we enable parallel decoding of our neural generative model that results in substantially faster (10-20x) inference speed as well as 4x faster training convergence than previous long-paragraph encoder-decoder models. We also demonstrate the generalization of our model on the test-only DUC-2002 dataset, where we achieve higher scores than a state-of-the-art model.Comment: ACL 2018 (17 pages

    Iterative Document Representation Learning Towards Summarization with Polishing

    Full text link
    In this paper, we introduce Iterative Text Summarization (ITS), an iteration-based model for supervised extractive text summarization, inspired by the observation that it is often necessary for a human to read an article multiple times in order to fully understand and summarize its contents. Current summarization approaches read through a document only once to generate a document representation, resulting in a sub-optimal representation. To address this issue we introduce a model which iteratively polishes the document representation on many passes through the document. As part of our model, we also introduce a selective reading mechanism that decides more accurately the extent to which each sentence in the model should be updated. Experimental results on the CNN/DailyMail and DUC2002 datasets demonstrate that our model significantly outperforms state-of-the-art extractive systems when evaluated by machines and by humans.Comment: 10 pages, 4 figures. emnlp 201

    A Deep Reinforced Model for Abstractive Summarization

    Full text link
    Attentional, RNN-based encoder-decoder models for abstractive summarization have achieved good performance on short input and output sequences. For longer documents and summaries however these models often include repetitive and incoherent phrases. We introduce a neural network model with a novel intra-attention that attends over the input and continuously generated output separately, and a new training method that combines standard supervised word prediction and reinforcement learning (RL). Models trained only with supervised learning often exhibit "exposure bias" - they assume ground truth is provided at each step during training. However, when standard word prediction is combined with the global sequence prediction training of RL the resulting summaries become more readable. We evaluate this model on the CNN/Daily Mail and New York Times datasets. Our model obtains a 41.16 ROUGE-1 score on the CNN/Daily Mail dataset, an improvement over previous state-of-the-art models. Human evaluation also shows that our model produces higher quality summaries
    • …
    corecore