2 research outputs found

    Parsimonious HMMs for Offline Handwritten Chinese Text Recognition

    Full text link
    Recently, hidden Markov models (HMMs) have achieved promising results for offline handwritten Chinese text recognition. However, due to the large vocabulary of Chinese characters with each modeled by a uniform and fixed number of hidden states, a high demand of memory and computation is required. In this study, to address this issue, we present parsimonious HMMs via the state tying which can fully utilize the similarities among different Chinese characters. Two-step algorithm with the data-driven question-set is adopted to generate the tied-state pool using the likelihood measure. The proposed parsimonious HMMs with both Gaussian mixture models (GMMs) and deep neural networks (DNNs) as the emission distributions not only lead to a compact model but also improve the recognition accuracy via the data sharing for the tied states and the confusion decreasing among state classes. Tested on ICDAR-2013 competition database, in the best configured case, the new parsimonious DNN-HMM can yield a relative character error rate (CER) reduction of 6.2%, 25% reduction of model size and 60% reduction of decoding time over the conventional DNN-HMM. In the compact setting case of average 1-state HMM, our parsimonious DNN-HMM significantly outperforms the conventional DNN-HMM with a relative CER reduction of 35.5%.Comment: Accepted by ICFHR201

    Aggregation Cross-Entropy for Sequence Recognition

    Full text link
    In this paper, we propose a novel method, aggregation cross-entropy (ACE), for sequence recognition from a brand new perspective. The ACE loss function exhibits competitive performance to CTC and the attention mechanism, with much quicker implementation (as it involves only four fundamental formulas), faster inference\back-propagation (approximately O(1) in parallel), less storage requirement (no parameter and negligible runtime memory), and convenient employment (by replacing CTC with ACE). Furthermore, the proposed ACE loss function exhibits two noteworthy properties: (1) it can be directly applied for 2D prediction by flattening the 2D prediction into 1D prediction as the input and (2) it requires only characters and their numbers in the sequence annotation for supervision, which allows it to advance beyond sequence recognition, e.g., counting problem. The code is publicly available at https://github.com/summerlvsong/Aggregation-Cross-Entropy.Comment: 10 pages, 6 figures, Accepted by CVPR201
    corecore