1,582 research outputs found

    Effective Use of Bidirectional Language Modeling for Transfer Learning in Biomedical Named Entity Recognition

    Full text link
    Biomedical named entity recognition (NER) is a fundamental task in text mining of medical documents and has many applications. Deep learning based approaches to this task have been gaining increasing attention in recent years as their parameters can be learned end-to-end without the need for hand-engineered features. However, these approaches rely on high-quality labeled data, which is expensive to obtain. To address this issue, we investigate how to use unlabeled text data to improve the performance of NER models. Specifically, we train a bidirectional language model (BiLM) on unlabeled data and transfer its weights to "pretrain" an NER model with the same architecture as the BiLM, which results in a better parameter initialization of the NER model. We evaluate our approach on four benchmark datasets for biomedical NER and show that it leads to a substantial improvement in the F1 scores compared with the state-of-the-art approaches. We also show that BiLM weight transfer leads to a faster model training and the pretrained model requires fewer training examples to achieve a particular F1 score.Comment: Machine Learning for Healthcare (MLHC) 2018, Comments: 12 pages, updated authors affiliation

    Cross-type Biomedical Named Entity Recognition with Deep Multi-Task Learning

    Full text link
    Motivation: State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results: We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.Comment: 7 pages, 4 figure

    Neural Metric Learning for Fast End-to-End Relation Extraction

    Full text link
    Relation extraction (RE) is an indispensable information extraction task in several disciplines. RE models typically assume that named entity recognition (NER) is already performed in a previous step by another independent model. Several recent efforts, under the theme of end-to-end RE, seek to exploit inter-task correlations by modeling both NER and RE tasks jointly. Earlier work in this area commonly reduces the task to a table-filling problem wherein an additional expensive decoding step involving beam search is applied to obtain globally consistent cell labels. In efforts that do not employ table-filling, global optimization in the form of CRFs with Viterbi decoding for the NER component is still necessary for competitive performance. We introduce a novel neural architecture utilizing the table structure, based on repeated applications of 2D convolutions for pooling local dependency and metric-based features, that improves on the state-of-the-art without the need for global optimization. We validate our model on the ADE and CoNLL04 datasets for end-to-end RE and demonstrate ≈1%\approx 1\% gain (in F-score) over prior best results with training and testing times that are seven to ten times faster --- the latter highly advantageous for time-sensitive end user applications

    BioBERT: a pre-trained biomedical language representation model for biomedical text mining

    Full text link
    Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.Comment: Bioinformatic

    CollaboNet: collaboration of deep neural networks for biomedical named entity recognition

    Full text link
    Background: Finding biomedical named entities is one of the most essential tasks in biomedical text mining. Recently, deep learning-based approaches have been applied to biomedical named entity recognition (BioNER) and showed promising results. However, as deep learning approaches need an abundant amount of training data, a lack of data can hinder performance. BioNER datasets are scarce resources and each dataset covers only a small subset of entity types. Furthermore, many bio entities are polysemous, which is one of the major obstacles in named entity recognition. Results: To address the lack of data and the entity type misclassification problem, we propose CollaboNet which utilizes a combination of multiple NER models. In CollaboNet, models trained on a different dataset are connected to each other so that a target model obtains information from other collaborator models to reduce false positives. Every model is an expert on their target entity type and takes turns serving as a target and a collaborator model during training time. The experimental results show that CollaboNet can be used to greatly reduce the number of false positives and misclassified entities including polysemous words. CollaboNet achieved state-of-the-art performance in terms of precision, recall and F1 score. Conclusions: We demonstrated the benefits of combining multiple models for BioNER. Our model has successfully reduced the number of misclassified entities and improved the performance by leveraging multiple datasets annotated for different entity types. Given the state-of-the-art performance of our model, we believe that CollaboNet can improve the accuracy of downstream biomedical text mining applications such as bio-entity relation extraction.Comment: From DTMBio workshop at CIKM 2018, Turin, Italy. 22-26 October 201

    MASK: A flexible framework to facilitate de-identification of clinical texts

    Full text link
    Medical health records and clinical summaries contain a vast amount of important information in textual form that can help advancing research on treatments, drugs and public health. However, the majority of these information is not shared because they contain private information about patients, their families, or medical staff treating them. Regulations such as HIPPA in the US, PHIPPA in Canada and GDPR regulate the protection, processing and distribution of this information. In case this information is de-identified and personal information are replaced or redacted, they could be distributed to the research community. In this paper, we present MASK, a software package that is designed to perform the de-identification task. The software is able to perform named entity recognition using some of the state-of-the-art techniques and then mask or redact recognized entities. The user is able to select named entity recognition algorithm (currently implemented are two versions of CRF-based techniques and BiLSTM-based neural network with pre-trained GLoVe and ELMo embedding) and masking algorithm (e.g. shift dates, replace names/locations, totally redact entity)

    SwellShark: A Generative Model for Biomedical Named Entity Recognition without Labeled Data

    Full text link
    We present SwellShark, a framework for building biomedical named entity recognition (NER) systems quickly and without hand-labeled data. Our approach views biomedical resources like lexicons as function primitives for autogenerating weak supervision. We then use a generative model to unify and denoise this supervision and construct large-scale, probabilistically labeled datasets for training high-accuracy NER taggers. In three biomedical NER tasks, SwellShark achieves competitive scores with state-of-the-art supervised benchmarks using no hand-labeled training data. In a drug name extraction task using patient medical records, one domain expert using SwellShark achieved within 5.1% of a crowdsourced annotation approach -- which originally utilized 20 teams over the course of several weeks -- in 24 hours

    Few-shot Learning for Named Entity Recognition in Medical Text

    Full text link
    Deep neural network models have recently achieved state-of-the-art performance gains in a variety of natural language processing (NLP) tasks (Young, Hazarika, Poria, & Cambria, 2017). However, these gains rely on the availability of large amounts of annotated examples, without which state-of-the-art performance is rarely achievable. This is especially inconvenient for the many NLP fields where annotated examples are scarce, such as medical text. To improve NLP models in this situation, we evaluate five improvements on named entity recognition (NER) tasks when only ten annotated examples are available: (1) layer-wise initialization with pre-trained weights, (2) hyperparameter tuning, (3) combining pre-training data, (4) custom word embeddings, and (5) optimizing out-of-vocabulary (OOV) words. Experimental results show that the F1 score of 69.3% achievable by state-of-the-art models can be improved to 78.87%.Comment: 10 pages, 4 figures, 4 table

    Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling

    Full text link
    Contextualized word embeddings such as ELMo and BERT provide a foundation for strong performance across a wide range of natural language processing tasks by pretraining on large corpora of unlabeled text. However, the applicability of this approach is unknown when the target domain varies substantially from the pretraining corpus. We are specifically interested in the scenario in which labeled data is available in only a canonical source domain such as newstext, and the target domain is distinct from both the labeled and pretraining texts. To address this scenario, we propose domain-adaptive fine-tuning, in which the contextualized embeddings are adapted by masked language modeling on text from the target domain. We test this approach on sequence labeling in two challenging domains: Early Modern English and Twitter. Both domains differ substantially from existing pretraining corpora, and domain-adaptive fine-tuning yields substantial improvements over strong BERT baselines, with particularly impressive results on out-of-vocabulary words. We conclude that domain-adaptive fine-tuning offers a simple and effective approach for the unsupervised adaptation of sequence labeling to difficult new domains.Comment: EMNLP 201

    Probing Biomedical Embeddings from Language Models

    Full text link
    Contextualized word embeddings derived from pre-trained language models (LMs) show significant improvements on downstream NLP tasks. Pre-training on domain-specific corpora, such as biomedical articles, further improves their performance. In this paper, we conduct probing experiments to determine what additional information is carried intrinsically by the in-domain trained contextualized embeddings. For this we use the pre-trained LMs as fixed feature extractors and restrict the downstream task models to not have additional sequence modeling layers. We compare BERT, ELMo, BioBERT and BioELMo, a biomedical version of ELMo trained on 10M PubMed abstracts. Surprisingly, while fine-tuned BioBERT is better than BioELMo in biomedical NER and NLI tasks, as a fixed feature extractor BioELMo outperforms BioBERT in our probing tasks. We use visualization and nearest neighbor analysis to show that better encoding of entity-type and relational information leads to this superiority.Comment: NAACL-HLT 2019 Workshop on Evaluating Vector Space Representations for NLP (RepEval
    • …
    corecore