1,591,712 research outputs found
A Deep Dive into Understanding Tumor Foci Classification using Multiparametric MRI Based on Convolutional Neural Network
Deep learning models have had a great success in disease classifications
using large data pools of skin cancer images or lung X-rays. However, data
scarcity has been the roadblock of applying deep learning models directly on
prostate multiparametric MRI (mpMRI). Although model interpretation has been
heavily studied for natural images for the past few years, there has been a
lack of interpretation of deep learning models trained on medical images. This
work designs a customized workflow for the small and imbalanced data set of
prostate mpMRI where features were extracted from a deep learning model and
then analyzed by a traditional machine learning classifier. In addition, this
work contributes to revealing how deep learning models interpret mpMRI for
prostate cancer patients stratification
Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa
This paper presents a generic Bayesian framework that enables any deep
learning model to actively learn from targeted crowds. Our framework inherits
from recent advances in Bayesian deep learning, and extends existing work by
considering the targeted crowdsourcing approach, where multiple annotators with
unknown expertise contribute an uncontrolled amount (often limited) of
annotations. Our framework leverages the low-rank structure in annotations to
learn individual annotator expertise, which then helps to infer the true labels
from noisy and sparse annotations. It provides a unified Bayesian model to
simultaneously infer the true labels and train the deep learning model in order
to reach an optimal learning efficacy. Finally, our framework exploits the
uncertainty of the deep learning model during prediction as well as the
annotators' estimated expertise to minimize the number of required annotations
and annotators for optimally training the deep learning model.
We evaluate the effectiveness of our framework for intent classification in
Alexa (Amazon's personal assistant), using both synthetic and real-world
datasets. Experiments show that our framework can accurately learn annotator
expertise, infer true labels, and effectively reduce the amount of annotations
in model training as compared to state-of-the-art approaches. We further
discuss the potential of our proposed framework in bridging machine learning
and crowdsourcing towards improved human-in-the-loop systems
- …
