30,839 research outputs found

    Classification of Time-Series Images Using Deep Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.Comment: The 10th International Conference on Machine Vision (ICMV 2017

    An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach

    Full text link
    Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy burden on neurologists and affects their performance. Several automatic techniques have been proposed using traditional approaches to assist neurologists in detecting binary epilepsy scenarios e.g. seizure vs. non-seizure or normal vs. ictal. These methods do not perform well when classifying ternary case e.g. ictal vs. normal vs. inter-ictal; the maximum accuracy for this case by the state-of-the-art-methods is 97+-1%. To overcome this problem, we propose a system based on deep learning, which is an ensemble of pyramidal one-dimensional convolutional neural network (P-1D-CNN) models. In a CNN model, the bottleneck is the large number of learnable parameters. P-1D-CNN works on the concept of refinement approach and it results in 60% fewer parameters compared to traditional CNN models. Further to overcome the limitations of small amount of data, we proposed augmentation schemes for learning P-1D-CNN model. In almost all the cases concerning epilepsy detection, the proposed system gives an accuracy of 99.1+-0.9% on the University of Bonn dataset.Comment: 18 page

    On the Feasibility of Transfer-learning Code Smells using Deep Learning

    Full text link
    Context: A substantial amount of work has been done to detect smells in source code using metrics-based and heuristics-based methods. Machine learning methods have been recently applied to detect source code smells; however, the current practices are considered far from mature. Objective: First, explore the feasibility of applying deep learning models to detect smells without extensive feature engineering, just by feeding the source code in tokenized form. Second, investigate the possibility of applying transfer-learning in the context of deep learning models for smell detection. Method: We use existing metric-based state-of-the-art methods for detecting three implementation smells and one design smell in C# code. Using these results as the annotated gold standard, we train smell detection models on three different deep learning architectures. These architectures use Convolution Neural Networks (CNNs) of one or two dimensions, or Recurrent Neural Networks (RNNs) as their principal hidden layers. For the first objective of our study, we perform training and evaluation on C# samples, whereas for the second objective, we train the models from C# code and evaluate the models over Java code samples. We perform the experiments with various combinations of hyper-parameters for each model. Results: We find it feasible to detect smells using deep learning methods. Our comparative experiments find that there is no clearly superior method between CNN-1D and CNN-2D. We also observe that performance of the deep learning models is smell-specific. Our transfer-learning experiments show that transfer-learning is definitely feasible for implementation smells with performance comparable to that of direct-learning. This work opens up a new paradigm to detect code smells by transfer-learning especially for the programming languages where the comprehensive code smell detection tools are not available

    Spatio-Temporal Deep Learning Models for Tip Force Estimation During Needle Insertion

    Full text link
    Purpose. Precise placement of needles is a challenge in a number of clinical applications such as brachytherapy or biopsy. Forces acting at the needle cause tissue deformation and needle deflection which in turn may lead to misplacement or injury. Hence, a number of approaches to estimate the forces at the needle have been proposed. Yet, integrating sensors into the needle tip is challenging and a careful calibration is required to obtain good force estimates. Methods. We describe a fiber-optical needle tip force sensor design using a single OCT fiber for measurement. The fiber images the deformation of an epoxy layer placed below the needle tip which results in a stream of 1D depth profiles. We study different deep learning approaches to facilitate calibration between this spatio-temporal image data and the related forces. In particular, we propose a novel convGRU-CNN architecture for simultaneous spatial and temporal data processing. Results. The needle can be adapted to different operating ranges by changing the stiffness of the epoxy layer. Likewise, calibration can be adapted by training the deep learning models. Our novel convGRU-CNN architecture results in the lowest mean absolute error of 1.59 +- 1.3 mN and a cross-correlation coefficient of 0.9997, and clearly outperforms the other methods. Ex vivo experiments in human prostate tissue demonstrate the needle's application. Conclusions. Our OCT-based fiber-optical sensor presents a viable alternative for needle tip force estimation. The results indicate that the rich spatio-temporal information included in the stream of images showing the deformation throughout the epoxy layer can be effectively used by deep learning models. Particularly, we demonstrate that the convGRU-CNN architecture performs favorably, making it a promising approach for other spatio-temporal learning problems.Comment: Accepted for publication in the International Journal of Computer Assisted Radiology and Surger

    Classification of EEG-Based Brain Connectivity Networks in Schizophrenia Using a Multi-Domain Connectome Convolutional Neural Network

    Full text link
    We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure. We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ). To capture complementary aspects of disrupted connectivity in SZ, we explore combination of various connectivity features consisting of time and frequency-domain metrics of effective connectivity based on vector autoregressive model and partial directed coherence, and complex network measures of network topology. We design a novel multi-domain connectome CNN (MDC-CNN) based on a parallel ensemble of 1D and 2D CNNs to integrate the features from various domains and dimensions using different fusion strategies. Hierarchical latent representations learned by the multiple convolutional layers from EEG connectivity reveal apparent group differences between SZ and healthy controls (HC). Results on a large resting-state EEG dataset show that the proposed CNNs significantly outperform traditional support vector machine classifiers. The MDC-CNN with combined connectivity features further improves performance over single-domain CNNs using individual features, achieving remarkable accuracy of 93.06%93.06\% with a decision-level fusion. The proposed MDC-CNN by integrating information from diverse brain connectivity descriptors is able to accurately discriminate SZ from HC. The new framework is potentially useful for developing diagnostic tools for SZ and other disorders.Comment: 15 pages, 9 figure

    Multi-convolution feature extraction and recurrent neural network dependent model for short-term load forecasting

    Get PDF
    Load forecasting is critical for power system operation and market planning.With the increased penetration of renewable energy and the massive consumption of electric energy, improving load forecasting accuracy has become a dif�cult task. Recently, it was demonstrated that deep learning models perform well for short-term load forecasting (STLF). However, prior research has demonstrated that the hybrid deep learning model outperforms the single model. We propose a hybrid neural network in this article that combines elements of a convolutional neural network (1D-CNN) and a long short memory network (LSTM) in novel ways. Multiple independent 1D-CNNs are used to extract load, calendar, and weather features from the proposed hybrid model, while LSTM is used to learn time patterns. This architecture is referred to as a CNN-LSTM network with multiple heads (MCNN-LSTM). To demonstrate the proposed hybrid deep learning model's superior performance, the proposed method is applied to Ireland's load data for single-step and multi-step load forecasting. In comparison to the widely used CNN-LSTM hybrid model, the proposed model improved single-step prediction by 16.73% and 24-step load prediction by 20.33%. Additionally, we use the Maine dataset to verify the proposed model's generalizability
    corecore